Scene-adaptive crowd counting method based on meta learning with dual-input network DMNet

计算机科学 人工智能 特征(语言学) 一般化 特征提取 计算机视觉 模式识别(心理学) 比例(比率) 对偶(语法数字) 数学 艺术 数学分析 哲学 语言学 物理 文学类 量子力学
作者
Haoyu Zhao,Weidong Min,Jianqiang Xu,Qi Wang,Yi Zou,Qiyan Fu
出处
期刊:Frontiers of Computer Science [Springer Nature]
卷期号:17 (1) 被引量:6
标识
DOI:10.1007/s11704-021-1207-x
摘要

Crowd counting is recently becoming a hot research topic, which aims to count the number of the people in different crowded scenes. Existing methods are mainly based on training-testing pattern and rely on large data training, which fails to accurately count the crowd in real-world scenes because of the limitation of model’s generalization capability. To alleviate this issue, a scene-adaptive crowd counting method based on meta-learning with Dual-illumination Merging Network (DMNet) is proposed in this paper. The proposed method based on learning-to-learn and few-shot learning is able to adapt different scenes which only contain a few labeled images. To generate high quality density map and count the crowd in low-lighting scene, the DMNet is proposed, which contains Multi-scale Feature Extraction module and Element-wise Fusion Module. The Multi-scale Feature Extraction module is used to extract the image feature by multi-scale convolutions, which helps to improve network accuracy. The Element-wise Fusion module fuses the low-lighting feature and illumination-enhanced feature, which supplements the missing illumination in low-lighting environments. Experimental results on benchmarks, WorldExpo’10, DISCO, USCD, and Mall, show that the proposed method outperforms the existing state-of-the-art methods in accuracy and gets satisfied results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hehe发布了新的文献求助10
刚刚
食杂砸完成签到,获得积分10
刚刚
1秒前
2秒前
冷静的冰露完成签到,获得积分10
2秒前
马子妍发布了新的文献求助10
2秒前
许王立发布了新的文献求助30
3秒前
3秒前
pluto应助荣荣采纳,获得10
4秒前
hew发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
lalala完成签到,获得积分20
6秒前
房恩羽完成签到,获得积分10
6秒前
泯工完成签到,获得积分10
6秒前
充电宝应助安康采纳,获得10
6秒前
Ll_l完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
sedrakyan发布了新的文献求助10
7秒前
8秒前
8秒前
orixero应助John采纳,获得10
8秒前
whisper完成签到,获得积分10
8秒前
lalala发布了新的文献求助10
8秒前
Akim应助刘xiansheng采纳,获得10
8秒前
领导范儿应助房恩羽采纳,获得10
9秒前
Emma完成签到,获得积分20
9秒前
ficus_min发布了新的文献求助10
9秒前
微凉发布了新的文献求助20
9秒前
在水一方应助敬之采纳,获得10
10秒前
11秒前
研友_VZG7GZ应助fantastic采纳,获得10
12秒前
杨忆枫发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
传奇3应助于文志采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894