生物炭
磷
化学
矿化(土壤科学)
肥料
环境化学
土壤肥力
农学
土壤水分
氮气
环境科学
土壤科学
热解
生物
有机化学
作者
Long Sui,Chunyu Tang,Kui Cheng,Fan Yang
标识
DOI:10.1016/j.scitotenv.2022.157748
摘要
Currently, the shortage of phosphorus resources is becoming more and more serious. In general, phosphorus fertilizer is poorly utilized in soil and tends to gradually accumulate. Freezing-thawing cycles (FT) are seasonal phenomenon occurring in high latitudes and altitudes regions, which have obvious influence on the form of phosphorus in soil. This study investigates the effect of biochar on soil physicochemical properties, phosphorus form and availability under FT and thermostatic incubation (TH) condition. Compared with treatment without biochar, 4 % biochar addition increased the soil pH value, electrical conductivity, organic matter and Olsen-P of soil by a maximum of 0.76, 285.55 μS/cm, 28.60 g/kg and 139.27 mg/kg, respectively. Moreover, according to Hedley-P classification results, under FT condition, the content of labile phosphorus pool is always higher than those under TH. FT may promote the conversion of phosphorus from other fractions to labile phosphorus pool. Redundancy analysis results show that biochar addition and FT can not only directly change the soil phosphorus pool, but also alter the soil physicochemical properties and microbial community, which further affect the adsorption and mineralization of phosphorus in soil. The results of this study will be devoted to understanding the changes in soil phosphorus fractions under the effects of biochar addition and FT, providing references for agricultural production in areas where FT occur.
科研通智能强力驱动
Strongly Powered by AbleSci AI