A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images

人工智能 深度学习 计算机科学 分割 目标检测 图像分割 计算机视觉 模式识别(心理学) 基于对象 像素 图像分辨率 机器学习 遥感 地理
作者
Zhangxi Ye,Kaile Yang,Yuwei Lin,Shijie Guo,Yiming Sun,Xunlong Chen,Riwen Lai,Houxi Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107822-107822 被引量:39
标识
DOI:10.1016/j.compag.2023.107822
摘要

It is challenging to accurately and rapidly extract crops based on the ultra-high spatial resolution images of uncrewed aerial vehicle (UAV). Object-based image analysis (OBIA) was regarded as an effective technique for high-spatial-resolution image classification because of its ability to achieve high accuracy by integrating multi-dimensional features. In recent years, deep learning (DL) techniques, with their ability to automatically learn image features from a large number of images, have shown great potential for crop monitoring. However, a systematic comparison of these two mainstream methods for monitoring the crop phenotype has not been conducted. Therefore, this study compares the performance of two advanced methods, DL and OBIA, in individual cabbage plant detection tasks. The results show that the Mask R-CNN deep learning model outperforms the object-based image analysis-multilevel distance transform watershed segmentation (OBIA-MDTWS) method in crop extraction and counting, with an overall mean F1-Score, accuracy of 2.70, 4.15 percentage points higher, respectively. Moreover, the Mask R-CNN deep learning model has higher computing efficiency, which is 3.74 times higher than the OBIA-MDTWS model. In summary, this study shows that the Mask R-CNN deep learning model performs better in vegetable extraction and quantity estimation, providing technical support for subsequent field nursery management and fine planting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mike_007发布了新的文献求助10
刚刚
1秒前
DijiaXu完成签到,获得积分10
1秒前
乖猫要努力完成签到,获得积分0
1秒前
小可爱完成签到,获得积分10
3秒前
黄黄完成签到,获得积分10
3秒前
cavi完成签到,获得积分10
3秒前
彪行天下完成签到,获得积分10
4秒前
lzl008完成签到 ,获得积分10
4秒前
mr完成签到 ,获得积分10
5秒前
海比天蓝关注了科研通微信公众号
5秒前
anan完成签到 ,获得积分10
5秒前
丁心莲关注了科研通微信公众号
5秒前
APS完成签到,获得积分10
5秒前
wkyt发布了新的文献求助10
6秒前
大胆的忆寒完成签到,获得积分10
7秒前
8秒前
tttx完成签到,获得积分10
8秒前
乐观若烟完成签到 ,获得积分10
9秒前
何必呢完成签到,获得积分10
9秒前
SC武完成签到,获得积分10
9秒前
清爽冬莲完成签到 ,获得积分10
12秒前
肖飞鱼完成签到,获得积分10
12秒前
文章快快来完成签到,获得积分10
13秒前
蛋炒饭加洋葱应助dd采纳,获得10
13秒前
萌萌完成签到,获得积分10
13秒前
啊鲤完成签到,获得积分10
13秒前
AJ完成签到 ,获得积分10
14秒前
贪吃完成签到,获得积分10
15秒前
白苹果完成签到 ,获得积分10
15秒前
自然千山完成签到,获得积分10
15秒前
独孤阳光完成签到,获得积分10
16秒前
欧欧欧导完成签到,获得积分10
16秒前
xiejuan完成签到,获得积分10
16秒前
lzl007完成签到 ,获得积分10
17秒前
归尘发布了新的文献求助10
18秒前
21GolDiamond完成签到,获得积分10
19秒前
标致的坤完成签到,获得积分10
19秒前
闹心完成签到,获得积分10
20秒前
调皮的秋柔完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027