A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images

人工智能 深度学习 计算机科学 分割 目标检测 图像分割 计算机视觉 模式识别(心理学) 基于对象 像素 图像分辨率 机器学习 遥感 地理
作者
Zhangxi Ye,Kaile Yang,Yuwei Lin,Shijie Guo,Yiming Sun,Xunlong Chen,Riwen Lai,Houxi Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107822-107822 被引量:54
标识
DOI:10.1016/j.compag.2023.107822
摘要

It is challenging to accurately and rapidly extract crops based on the ultra-high spatial resolution images of uncrewed aerial vehicle (UAV). Object-based image analysis (OBIA) was regarded as an effective technique for high-spatial-resolution image classification because of its ability to achieve high accuracy by integrating multi-dimensional features. In recent years, deep learning (DL) techniques, with their ability to automatically learn image features from a large number of images, have shown great potential for crop monitoring. However, a systematic comparison of these two mainstream methods for monitoring the crop phenotype has not been conducted. Therefore, this study compares the performance of two advanced methods, DL and OBIA, in individual cabbage plant detection tasks. The results show that the Mask R-CNN deep learning model outperforms the object-based image analysis-multilevel distance transform watershed segmentation (OBIA-MDTWS) method in crop extraction and counting, with an overall mean F1-Score, accuracy of 2.70, 4.15 percentage points higher, respectively. Moreover, the Mask R-CNN deep learning model has higher computing efficiency, which is 3.74 times higher than the OBIA-MDTWS model. In summary, this study shows that the Mask R-CNN deep learning model performs better in vegetable extraction and quantity estimation, providing technical support for subsequent field nursery management and fine planting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sgqtzdzq完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
3秒前
111发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助lxx采纳,获得10
8秒前
9秒前
天天快乐应助明天采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
兴奋若冰完成签到,获得积分10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
耶喽小黄发布了新的文献求助10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
whatever应助科研通管家采纳,获得20
11秒前
浮游应助科研通管家采纳,获得10
11秒前
隐形曼青应助sgqtzdzq采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048169
求助须知:如何正确求助?哪些是违规求助? 4276803
关于积分的说明 13331169
捐赠科研通 4091278
什么是DOI,文献DOI怎么找? 2238889
邀请新用户注册赠送积分活动 1245897
关于科研通互助平台的介绍 1174356