A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images

人工智能 深度学习 计算机科学 分割 目标检测 图像分割 计算机视觉 模式识别(心理学) 基于对象 像素 图像分辨率 机器学习 遥感 地理
作者
Zhangxi Ye,Kaile Yang,Yuwei Lin,Shijie Guo,Yiming Sun,Xunlong Chen,Riwen Lai,Houxi Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:209: 107822-107822 被引量:39
标识
DOI:10.1016/j.compag.2023.107822
摘要

It is challenging to accurately and rapidly extract crops based on the ultra-high spatial resolution images of uncrewed aerial vehicle (UAV). Object-based image analysis (OBIA) was regarded as an effective technique for high-spatial-resolution image classification because of its ability to achieve high accuracy by integrating multi-dimensional features. In recent years, deep learning (DL) techniques, with their ability to automatically learn image features from a large number of images, have shown great potential for crop monitoring. However, a systematic comparison of these two mainstream methods for monitoring the crop phenotype has not been conducted. Therefore, this study compares the performance of two advanced methods, DL and OBIA, in individual cabbage plant detection tasks. The results show that the Mask R-CNN deep learning model outperforms the object-based image analysis-multilevel distance transform watershed segmentation (OBIA-MDTWS) method in crop extraction and counting, with an overall mean F1-Score, accuracy of 2.70, 4.15 percentage points higher, respectively. Moreover, the Mask R-CNN deep learning model has higher computing efficiency, which is 3.74 times higher than the OBIA-MDTWS model. In summary, this study shows that the Mask R-CNN deep learning model performs better in vegetable extraction and quantity estimation, providing technical support for subsequent field nursery management and fine planting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不如一默发布了新的文献求助10
1秒前
李爱国应助小小莫采纳,获得10
1秒前
安白枫发布了新的文献求助10
1秒前
羊可完成签到 ,获得积分10
1秒前
3秒前
zzzzzz完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
7秒前
情怀应助sofea采纳,获得10
7秒前
科目三应助ppg123采纳,获得10
8秒前
科研顺利1完成签到,获得积分10
8秒前
安白枫完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
俊秀的芫发布了新的文献求助50
10秒前
SOLKATT发布了新的文献求助10
11秒前
Ava应助紫紫吃菠菜采纳,获得10
12秒前
科研通AI5应助超级气泡水采纳,获得10
13秒前
cxh发布了新的文献求助10
14秒前
彭于晏应助糕糕采纳,获得30
15秒前
zho发布了新的文献求助10
16秒前
Rui完成签到,获得积分10
17秒前
斯文败类应助cxh采纳,获得10
17秒前
JamesPei应助茹茹采纳,获得10
17秒前
bkagyin应助和谐的蜡烛采纳,获得10
18秒前
20秒前
21秒前
风中乐松发布了新的文献求助10
22秒前
xiaowang发布了新的文献求助10
24秒前
24秒前
26秒前
26秒前
27秒前
28秒前
EdwardAi发布了新的文献求助10
29秒前
小麒麟发布了新的文献求助30
29秒前
茹茹发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555383
求助须知:如何正确求助?哪些是违规求助? 3131010
关于积分的说明 9389629
捐赠科研通 2830491
什么是DOI,文献DOI怎么找? 1556069
邀请新用户注册赠送积分活动 726432
科研通“疑难数据库(出版商)”最低求助积分说明 715738