重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images

人工智能 深度学习 计算机科学 分割 目标检测 图像分割 计算机视觉 模式识别(心理学) 基于对象 像素 图像分辨率 机器学习 遥感 地理
作者
Zhangxi Ye,Kaile Yang,Yuwei Lin,Shijie Guo,Yiming Sun,Xunlong Chen,Riwen Lai,Houxi Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:209: 107822-107822 被引量:54
标识
DOI:10.1016/j.compag.2023.107822
摘要

It is challenging to accurately and rapidly extract crops based on the ultra-high spatial resolution images of uncrewed aerial vehicle (UAV). Object-based image analysis (OBIA) was regarded as an effective technique for high-spatial-resolution image classification because of its ability to achieve high accuracy by integrating multi-dimensional features. In recent years, deep learning (DL) techniques, with their ability to automatically learn image features from a large number of images, have shown great potential for crop monitoring. However, a systematic comparison of these two mainstream methods for monitoring the crop phenotype has not been conducted. Therefore, this study compares the performance of two advanced methods, DL and OBIA, in individual cabbage plant detection tasks. The results show that the Mask R-CNN deep learning model outperforms the object-based image analysis-multilevel distance transform watershed segmentation (OBIA-MDTWS) method in crop extraction and counting, with an overall mean F1-Score, accuracy of 2.70, 4.15 percentage points higher, respectively. Moreover, the Mask R-CNN deep learning model has higher computing efficiency, which is 3.74 times higher than the OBIA-MDTWS model. In summary, this study shows that the Mask R-CNN deep learning model performs better in vegetable extraction and quantity estimation, providing technical support for subsequent field nursery management and fine planting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如如发布了新的文献求助10
刚刚
pxm1277完成签到,获得积分10
1秒前
1秒前
2秒前
Alex完成签到,获得积分10
3秒前
菜菜完成签到,获得积分10
3秒前
a111完成签到,获得积分10
3秒前
3秒前
4秒前
小宇子完成签到,获得积分20
4秒前
桐桐应助tsumugi采纳,获得10
4秒前
胡梅13完成签到,获得积分10
5秒前
淡淡的鸽子给淡淡的鸽子的求助进行了留言
5秒前
5秒前
Ostrichhhh发布了新的文献求助20
5秒前
研友_VZG7GZ应助烤布蕾采纳,获得10
5秒前
安安发布了新的文献求助30
5秒前
火星上如松完成签到 ,获得积分10
6秒前
浮游应助顺其自然_666888采纳,获得10
6秒前
未若从前i完成签到,获得积分10
8秒前
闪闪凡霜完成签到,获得积分10
8秒前
YINLI完成签到,获得积分20
8秒前
Alex发布了新的文献求助10
9秒前
10秒前
进击的大叔完成签到,获得积分10
10秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
renshiq完成签到,获得积分10
12秒前
12秒前
小宇子发布了新的文献求助10
13秒前
大卷完成签到,获得积分10
13秒前
wanci应助柳橙采纳,获得10
13秒前
阿艺完成签到,获得积分10
14秒前
浮游应助sk采纳,获得10
15秒前
CHENHAHA完成签到,获得积分10
15秒前
15秒前
昨夜書完成签到 ,获得积分10
15秒前
cui发布了新的文献求助10
16秒前
小蘑菇应助ssn采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699