USOD10K: A New Benchmark Dataset for Underwater Salient Object Detection

计算机科学 水下 突出 自动汇总 人工智能 水准点(测量) 标杆管理 编码器 可扩展性 可视化 目标检测 计算机视觉 分割 数据库 海洋学 大地测量学 营销 地理 业务 地质学 操作系统
作者
Lin Hong,Xin Wang,Gan Zhang,Ming Zhao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:31
标识
DOI:10.1109/tip.2023.3266163
摘要

Underwater salient object detection (USOD) attracts increasing interest for its promising performance in various underwater visual tasks. However, USOD research is still in its early stages due to the lack of large-scale datasets within which salient objects are well-defined and pixel-wise annotated. To address this issue, this paper introduces a new dataset named USOD10K. It consists of 10,255 underwater images, covering 70 categories of salient objects in 12 different underwater scenes. In addition, salient object boundaries and depth maps of all images are provided in this dataset. The USOD10K is the first large-scale dataset in the USOD community, making a significant leap in diversity, complexity, and scalability. Secondly, a simple but strong baseline termed TC-USOD is designed for the USOD10K. The TC-USOD adopts a hybrid architecture based on an encoder-decoder design that leverages transformer and convolution as the basic computational building block of the encoder and decoder, respectively. Thirdly, we make a comprehensive summarization of 35 cutting-edge SOD/USOD methods and benchmark them over the existing USOD dataset and the USOD10K. The results show that our TC-USOD obtained superior performance on all datasets tested. Finally, several other use cases of the USOD10K are discussed, and future directions of USOD research are pointed out. This work will promote the development of the USOD research and facilitate further research on underwater visual tasks and visually-guided underwater robots. To pave the road in this research field, all the dataset, code, and benchmark results are publicly available: https://github.com/LinHong-HIT/USOD10K.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ash完成签到,获得积分10
刚刚
马伟杰发布了新的文献求助10
刚刚
Jasper应助一直向前采纳,获得10
1秒前
思源应助狂野忆文采纳,获得10
1秒前
大模型应助狂野忆文采纳,获得10
1秒前
科目三应助狂野忆文采纳,获得10
1秒前
酷波er应助狂野忆文采纳,获得10
1秒前
CipherSage应助狂野忆文采纳,获得10
1秒前
传奇3应助狂野忆文采纳,获得10
1秒前
斯文败类应助狂野忆文采纳,获得10
1秒前
爆米花应助狂野忆文采纳,获得10
1秒前
英姑应助狂野忆文采纳,获得10
2秒前
Hello应助狂野忆文采纳,获得10
2秒前
八月完成签到,获得积分10
2秒前
Man_proposes完成签到,获得积分10
2秒前
小佳完成签到,获得积分10
2秒前
学渣一枚完成签到,获得积分10
2秒前
2秒前
月半完成签到,获得积分10
3秒前
fys131415完成签到 ,获得积分10
3秒前
闪闪火车完成签到 ,获得积分10
3秒前
4秒前
jidou1011完成签到,获得积分10
4秒前
扁舟灬完成签到,获得积分10
4秒前
QZZ完成签到,获得积分10
4秒前
agnway完成签到,获得积分10
4秒前
5秒前
战战兢兢完成签到 ,获得积分10
5秒前
xuejie发布了新的文献求助30
5秒前
专一的傲白完成签到 ,获得积分10
5秒前
星辰大海应助miezhugong采纳,获得30
6秒前
zh完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
CodeCraft应助he采纳,获得10
6秒前
wisdom完成签到,获得积分10
7秒前
科研通AI2S应助Distance采纳,获得20
7秒前
8秒前
8秒前
肖耶啵完成签到,获得积分10
8秒前
betyby发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259