Sample-Observed Soft Actor-Critic Learning for Path Following of a Biomimetic Underwater Vehicle

水下 人工智能 工程类 路径(计算) 强化学习 仿生学 计算机科学 模拟 控制工程 海洋学 程序设计语言 地质学
作者
Ruichen Ma,Yu Wang,Shuo Wang,Long Cheng,Rui Wang,Min Tan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tase.2023.3264237
摘要

This paper addresses a learning-based path following control scheme for a biomimetic underwater vehicle (BUV) driven by undulatory fins. A dynamic line-of-sight (DLOS) guidance system is designed, which uses a virtual ball with a dynamic radius to detect the reference path. This DLOS system guides our BUV in the path following control and extracts essential information for the Markov decision process (MDP) of the control task. A deep reinforcement learning (DRL) algorithm, sample-observed soft actor-critic (SOSAC) is proposed. The can train out control policy with greater cumulative reward and higher success rate by using two tricks: sample observation and sample diversification. Based on the DLOS system, the MDP of the control task, and a multilayer perceptron (MLP) trained by the SOSAC, our control scheme is established. Experiments show that our BUV can successfully achieve path following control in an indoor pool environment by using this control scheme. Note to Practitioners —The motivation of this paper is to design a practical end-to-end path following control scheme for the BUV driven by undulatory fins, and verify this scheme in a real-world environment. Unlike common autonomous underwater vehicles (AUVs) using axial propellers, the BUVs apply biomimetic propellers such as the undulatory fin. Multimodel wave patterns can be implemented by the undulatory fin, which generates nonlinear thrust and lateral force simultaneously. This propulsive feature makes the driving force on different directions of the BUV to be strong coupled, and it is complicated to convert the outputs of a common controller into waveform parameters of the undulatory fins to control the BUV. Therefore, in this paper, we proposed an end-to-end learning-based path following controller, which observes environmental information and directly generates waveform parameters to control our BUV. Experiments suggest that our control scheme is practical and valid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦松完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
俭朴白凡发布了新的文献求助10
1秒前
nisha完成签到,获得积分10
2秒前
杨乐多完成签到,获得积分10
2秒前
西米完成签到 ,获得积分10
3秒前
今后应助顺心的水之采纳,获得10
3秒前
nee完成签到,获得积分10
3秒前
bobo完成签到,获得积分10
4秒前
隐形曼青应助落叶无悔采纳,获得10
5秒前
蜡笔小鑫发布了新的文献求助10
5秒前
十五完成签到,获得积分10
5秒前
Ada完成签到,获得积分20
5秒前
ZHANGJIAN发布了新的文献求助10
6秒前
6秒前
6秒前
毕不了业的凡阿哥完成签到,获得积分10
7秒前
踏实奇异果完成签到,获得积分10
7秒前
7秒前
我不爱学习完成签到,获得积分20
8秒前
NexusExplorer应助俭朴白凡采纳,获得10
9秒前
Azure完成签到,获得积分10
10秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
饱满板栗完成签到,获得积分10
10秒前
euphoria发布了新的文献求助10
11秒前
犹豫的碧灵完成签到,获得积分10
11秒前
11秒前
标致的以寒完成签到,获得积分10
12秒前
zhaoyaoshi完成签到,获得积分10
12秒前
Akim应助12345采纳,获得10
12秒前
wangc发布了新的文献求助10
13秒前
Wiggins完成签到,获得积分10
13秒前
合适怡完成签到,获得积分10
13秒前
传奇3应助Mona采纳,获得10
13秒前
施凝完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158816
求助须知:如何正确求助?哪些是违规求助? 2810026
关于积分的说明 7885324
捐赠科研通 2468805
什么是DOI,文献DOI怎么找? 1314396
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012