Diagnosis of gastric cancer based on hybrid genes selection approach

随机森林 过采样 特征选择 接收机工作特性 选择(遗传算法) 人工智能 计算机科学 交叉验证 模式识别(心理学) 癌症 统计 数学 机器学习 生物 遗传学 带宽(计算) 计算机网络
作者
Jie Liu,Cheng Zhong,Jiamin Zhang,Kejun Liu,Mengjie Liu
出处
期刊:Biotechnology & Genetic Engineering Reviews [Taylor & Francis]
卷期号:: 1-20
标识
DOI:10.1080/02648725.2023.2202524
摘要

Gastric cancer (GC) is the third leading cause of cancer death worldwide. In the field of medicine, machine learning is widely used in genetic data mining and the construction of diagnostic models. This study proposed an intelligent model DERFS-XGBoost for rapid and accurate diagnosis of GC based on gene expression data. Firstly, the data of GC were collected and preprocessed. Secondly, ANOVA, t-test and fold chang (FC) were used to select genes that had significant differentially expressed genes (DEGs), and random forest (RF) was used to calculate their importance, and then sequential forward selection (SFS) was used to obtain the optimal feature subset. Finally, XGBoost was used for classification after synthetic minority oversampling technique (SMOTE) balanced between tumor and normal samples. In order to objectively evaluate the results, the 10-fold cross-validation and 10 repeated experiments were used in the experiment, and the average value of the evaluation indexes was used to evaluate the classification effect. Based on the experiment, DERFS-XGBoost model accuracy rate was 97.6%, precision was 100%, the recall rate was 97.3%, F1 was 99%, and the area under the ROC receiver operating characteristic curve AUC was 98.7%. The DERFS-XGBoost model has new characteristics which are different from existing diagnostic models, and has achieved a high classification effect with a small number of genes in comparison tests, which provides a new method and basis for the diagnosis of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的冬天完成签到,获得积分10
刚刚
小栩完成签到 ,获得积分10
1秒前
啦啦啦啦啦啦啦啦完成签到 ,获得积分10
1秒前
曲沛萍发布了新的文献求助10
1秒前
宁阿霜发布了新的文献求助20
2秒前
SOO应助研友_5476B5采纳,获得10
2秒前
夏风完成签到 ,获得积分10
3秒前
隐形曼青应助萧小五采纳,获得10
3秒前
Jiawei完成签到,获得积分10
3秒前
nieanicole发布了新的文献求助10
3秒前
小橙同学完成签到 ,获得积分10
3秒前
Ava应助yukinade采纳,获得10
4秒前
爆米花应助hahhh7采纳,获得10
4秒前
4秒前
深情安青应助leodu采纳,获得10
5秒前
5秒前
6秒前
开心完成签到,获得积分10
7秒前
Never stall完成签到,获得积分10
7秒前
7秒前
7秒前
甜美的雁开完成签到,获得积分20
8秒前
猫归四海关注了科研通微信公众号
8秒前
CipherSage应助vinecho采纳,获得30
8秒前
8秒前
大气亦巧完成签到,获得积分10
9秒前
ding应助2025tangtang采纳,获得10
9秒前
9秒前
一心完成签到,获得积分10
9秒前
9秒前
zzzx完成签到,获得积分10
10秒前
Abby发布了新的文献求助10
10秒前
wade发布了新的文献求助10
11秒前
开心岩完成签到,获得积分10
11秒前
11秒前
llwxx完成签到,获得积分10
11秒前
鹿鹿完成签到,获得积分10
11秒前
鹏程发布了新的文献求助10
11秒前
无情白羊发布了新的文献求助10
12秒前
郭慧梅完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653