已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

计算机科学 模糊测试 程序设计语言 Python(编程语言) 人工智能 语法 语义学(计算机科学) 编码(集合论) 自然语言处理 软件 集合(抽象数据类型)
作者
Yinlin Deng,Chunqiu Steven Xia,Haoran Peng,Chenyuan Yang,Lingming Zhang
标识
DOI:10.1145/3597926.3598067
摘要

Deep Learning (DL) systems have received exponential growth in popularity and have become ubiquitous in our everyday life. Such systems are built on top of popular DL libraries, e.g., TensorFlow and PyTorch which provide APIs as building blocks for DL systems. Detecting bugs in these DL libraries is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations. To address these limitations, we propose TitanFuzz – the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 44 already confirmed as previously unknown bugs. This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dan发布了新的文献求助10
2秒前
啦啦啦啦啦完成签到 ,获得积分10
2秒前
YU完成签到 ,获得积分10
2秒前
2秒前
良月完成签到 ,获得积分10
2秒前
风趣的梦露完成签到 ,获得积分10
2秒前
2秒前
zzzrrr完成签到 ,获得积分10
3秒前
ys1111xiao完成签到 ,获得积分10
3秒前
临子完成签到,获得积分10
4秒前
123123完成签到 ,获得积分10
4秒前
温暖的炒饭完成签到 ,获得积分10
4秒前
屠夫9441完成签到,获得积分10
5秒前
chen完成签到 ,获得积分10
5秒前
5秒前
6秒前
小杨完成签到,获得积分10
6秒前
8秒前
祁问儿完成签到 ,获得积分10
9秒前
白枫完成签到 ,获得积分10
9秒前
不再挨训完成签到 ,获得积分10
10秒前
李顺利完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
直率的以寒完成签到 ,获得积分10
10秒前
10秒前
852应助团子采纳,获得10
10秒前
黄小雨完成签到,获得积分20
10秒前
斯文麦片完成签到 ,获得积分10
11秒前
大大大忽悠完成签到 ,获得积分10
11秒前
杨远杰完成签到 ,获得积分10
11秒前
RWcreator完成签到 ,获得积分10
11秒前
逍遥完成签到,获得积分10
11秒前
77完成签到 ,获得积分10
12秒前
DChen完成签到 ,获得积分10
12秒前
干净溪流发布了新的文献求助50
12秒前
泥泞完成签到 ,获得积分10
12秒前
pinklay完成签到 ,获得积分10
12秒前
LiuKun完成签到,获得积分10
13秒前
Eileen完成签到 ,获得积分10
14秒前
小冉完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515374
求助须知:如何正确求助?哪些是违规求助? 4608851
关于积分的说明 14513690
捐赠科研通 4545250
什么是DOI,文献DOI怎么找? 2490434
邀请新用户注册赠送积分活动 1472471
关于科研通互助平台的介绍 1444149

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10