Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

计算机科学 模糊测试 程序设计语言 Python(编程语言) 人工智能 语法 语义学(计算机科学) 编码(集合论) 自然语言处理 软件 集合(抽象数据类型)
作者
Yinlin Deng,Chunqiu Steven Xia,Haoran Peng,Chenyuan Yang,Lingming Zhang
标识
DOI:10.1145/3597926.3598067
摘要

Deep Learning (DL) systems have received exponential growth in popularity and have become ubiquitous in our everyday life. Such systems are built on top of popular DL libraries, e.g., TensorFlow and PyTorch which provide APIs as building blocks for DL systems. Detecting bugs in these DL libraries is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations. To address these limitations, we propose TitanFuzz – the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 44 already confirmed as previously unknown bugs. This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海阔天空发布了新的文献求助10
1秒前
迅速的孤菱完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
冬烜完成签到 ,获得积分10
2秒前
Zard发布了新的文献求助10
3秒前
liu123456完成签到,获得积分10
3秒前
屎味烤地瓜完成签到,获得积分10
3秒前
852应助荒野风采纳,获得10
4秒前
7秒前
芳泽发布了新的文献求助10
7秒前
su发布了新的文献求助10
8秒前
Milou完成签到,获得积分10
9秒前
9秒前
老阎应助科研通管家采纳,获得30
9秒前
orixero应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
科研白菜白完成签到,获得积分10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得20
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研乞丐应助科研通管家采纳,获得20
10秒前
jjj应助科研通管家采纳,获得20
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得30
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
10秒前
烟花应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
zpt完成签到,获得积分10
11秒前
爱学习的瑞瑞子完成签到 ,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066