亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

计算机科学 模糊测试 程序设计语言 Python(编程语言) 人工智能 语法 语义学(计算机科学) 编码(集合论) 自然语言处理 软件 集合(抽象数据类型)
作者
Yinlin Deng,Chunqiu Steven Xia,Haoran Peng,Chenyuan Yang,Lingming Zhang
标识
DOI:10.1145/3597926.3598067
摘要

Deep Learning (DL) systems have received exponential growth in popularity and have become ubiquitous in our everyday life. Such systems are built on top of popular DL libraries, e.g., TensorFlow and PyTorch which provide APIs as building blocks for DL systems. Detecting bugs in these DL libraries is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations. To address these limitations, we propose TitanFuzz – the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 44 already confirmed as previously unknown bugs. This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoungJC66完成签到,获得积分10
4秒前
7秒前
今后应助海派Hi采纳,获得10
11秒前
zgsjymysmyy发布了新的文献求助10
11秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
小栗子发布了新的文献求助10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
zgsjymysmyy完成签到 ,获得积分10
30秒前
33秒前
葉鳳怡完成签到 ,获得积分10
34秒前
hb完成签到,获得积分10
39秒前
于欣然完成签到,获得积分10
41秒前
思源应助好主意采纳,获得10
45秒前
汉堡包应助sxmt123456789采纳,获得10
46秒前
车厘子完成签到 ,获得积分10
48秒前
48秒前
安详的夜春完成签到,获得积分10
52秒前
Hhhhh完成签到 ,获得积分10
59秒前
美罗培南完成签到,获得积分0
1分钟前
zzz1231123完成签到,获得积分10
1分钟前
今后应助Jsihao采纳,获得10
1分钟前
1分钟前
GingerF应助着急的冬寒采纳,获得50
1分钟前
失眠的向秋完成签到,获得积分20
1分钟前
1分钟前
sxmt123456789发布了新的文献求助10
1分钟前
好主意发布了新的文献求助10
1分钟前
江氏巨颏虎完成签到,获得积分10
1分钟前
陶醉的钢笔完成签到 ,获得积分0
1分钟前
Party完成签到,获得积分10
1分钟前
自信日记本完成签到 ,获得积分10
1分钟前
GingerF应助着急的冬寒采纳,获得50
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164