Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

计算机科学 模糊测试 程序设计语言 Python(编程语言) 人工智能 语法 语义学(计算机科学) 编码(集合论) 自然语言处理 软件 集合(抽象数据类型)
作者
Yinlin Deng,Chunqiu Steven Xia,Haoran Peng,Chenyuan Yang,Lingming Zhang
标识
DOI:10.1145/3597926.3598067
摘要

Deep Learning (DL) systems have received exponential growth in popularity and have become ubiquitous in our everyday life. Such systems are built on top of popular DL libraries, e.g., TensorFlow and PyTorch which provide APIs as building blocks for DL systems. Detecting bugs in these DL libraries is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations. To address these limitations, we propose TitanFuzz – the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 44 already confirmed as previously unknown bugs. This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逆游的鱼完成签到,获得积分10
刚刚
牟潦草发布了新的文献求助10
刚刚
红箭烟雨发布了新的文献求助10
刚刚
1秒前
伏城发布了新的文献求助10
1秒前
a'mao'men完成签到,获得积分10
1秒前
wsafhgfjb完成签到,获得积分10
2秒前
轩辕发布了新的文献求助10
2秒前
杨无敌完成签到 ,获得积分10
2秒前
浩瀚完成签到,获得积分10
3秒前
香蕉觅云应助Chhc2采纳,获得10
3秒前
4秒前
yingme完成签到,获得积分10
4秒前
方旭明完成签到 ,获得积分10
4秒前
勤劳高跟鞋完成签到 ,获得积分10
5秒前
5秒前
罗健完成签到 ,获得积分10
5秒前
5秒前
十柒完成签到 ,获得积分10
5秒前
笨笨念文完成签到,获得积分10
6秒前
6秒前
把握有度完成签到,获得积分10
6秒前
6秒前
Joy完成签到,获得积分10
6秒前
哆啦的空间站应助liang2508采纳,获得10
6秒前
哆啦的空间站应助liang2508采纳,获得10
6秒前
哆啦的空间站应助liang2508采纳,获得10
6秒前
sherrom应助liang2508采纳,获得10
6秒前
sherrom应助liang2508采纳,获得10
7秒前
科研通AI2S应助liang2508采纳,获得10
7秒前
科研通AI2S应助liang2508采纳,获得10
7秒前
哆啦的空间站应助liang2508采纳,获得10
7秒前
科研通AI5应助liang2508采纳,获得10
7秒前
赘婿应助liang2508采纳,获得10
7秒前
红箭烟雨完成签到,获得积分10
7秒前
lifenghou完成签到 ,获得积分10
8秒前
8秒前
开放咖啡豆完成签到 ,获得积分10
8秒前
ruqinmq完成签到,获得积分10
8秒前
荔枝草莓酱完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927230
求助须知:如何正确求助?哪些是违规求助? 4196614
关于积分的说明 13033700
捐赠科研通 3969366
什么是DOI,文献DOI怎么找? 2175324
邀请新用户注册赠送积分活动 1192409
关于科研通互助平台的介绍 1103081