亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

计算机科学 模糊测试 程序设计语言 Python(编程语言) 人工智能 语法 语义学(计算机科学) 编码(集合论) 自然语言处理 软件 集合(抽象数据类型)
作者
Yinlin Deng,Chunqiu Steven Xia,Haoran Peng,Chenyuan Yang,Lingming Zhang
标识
DOI:10.1145/3597926.3598067
摘要

Deep Learning (DL) systems have received exponential growth in popularity and have become ubiquitous in our everyday life. Such systems are built on top of popular DL libraries, e.g., TensorFlow and PyTorch which provide APIs as building blocks for DL systems. Detecting bugs in these DL libraries is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations. To address these limitations, we propose TitanFuzz – the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 44 already confirmed as previously unknown bugs. This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
39秒前
39秒前
脆脆鲨完成签到,获得积分10
1分钟前
噜噜大王发布了新的文献求助10
1分钟前
CipherSage应助oddfunction采纳,获得10
1分钟前
瑾木完成签到,获得积分10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
2分钟前
光亮的半山完成签到,获得积分10
2分钟前
Clay完成签到 ,获得积分10
2分钟前
平常友卉发布了新的文献求助10
2分钟前
2分钟前
2分钟前
oddfunction发布了新的文献求助10
2分钟前
噜噜大王发布了新的文献求助30
2分钟前
噜噜大王发布了新的文献求助30
3分钟前
黄玥完成签到,获得积分10
3分钟前
JamesPei应助诚心山灵采纳,获得30
3分钟前
小铭同学完成签到,获得积分10
3分钟前
3分钟前
智慧金刚完成签到 ,获得积分10
3分钟前
诚心山灵发布了新的文献求助30
3分钟前
4分钟前
噜噜大王发布了新的文献求助10
4分钟前
koko19981228发布了新的文献求助10
4分钟前
4分钟前
噜噜大王发布了新的文献求助100
5分钟前
淡定完成签到,获得积分10
5分钟前
5分钟前
噜噜大王发布了新的文献求助10
5分钟前
淡定发布了新的文献求助10
5分钟前
噜噜大王发布了新的文献求助10
5分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
噜噜大王发布了新的文献求助30
6分钟前
科研通AI2S应助599采纳,获得10
6分钟前
6分钟前
高源发布了新的文献求助10
6分钟前
在水一方应助oddfunction采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568208
求助须知:如何正确求助?哪些是违规求助? 4652699
关于积分的说明 14701943
捐赠科研通 4594540
什么是DOI,文献DOI怎么找? 2521065
邀请新用户注册赠送积分活动 1492895
关于科研通互助平台的介绍 1463698