Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

计算机科学 模糊测试 程序设计语言 Python(编程语言) 人工智能 语法 语义学(计算机科学) 编码(集合论) 自然语言处理 软件 集合(抽象数据类型)
作者
Yinlin Deng,Chunqiu Steven Xia,Haoran Peng,Chenyuan Yang,Lingming Zhang
标识
DOI:10.1145/3597926.3598067
摘要

Deep Learning (DL) systems have received exponential growth in popularity and have become ubiquitous in our everyday life. Such systems are built on top of popular DL libraries, e.g., TensorFlow and PyTorch which provide APIs as building blocks for DL systems. Detecting bugs in these DL libraries is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations. To address these limitations, we propose TitanFuzz – the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 44 already confirmed as previously unknown bugs. This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助小木林采纳,获得10
刚刚
独特的兰发布了新的文献求助10
刚刚
pluto应助mobay采纳,获得10
1秒前
1秒前
舒心凝珍发布了新的文献求助10
2秒前
4秒前
独特的兰完成签到,获得积分10
6秒前
传奇3应助陈豆豆采纳,获得10
6秒前
学林书屋发布了新的文献求助30
6秒前
7秒前
月流瓦发布了新的文献求助20
7秒前
7秒前
jingyu完成签到,获得积分20
8秒前
翟淑雨完成签到,获得积分10
9秒前
IV完成签到,获得积分10
9秒前
fyukgfdyifotrf完成签到,获得积分10
10秒前
10秒前
小橙完成签到 ,获得积分10
11秒前
CodeCraft应助LucyLi采纳,获得10
11秒前
111231完成签到,获得积分10
11秒前
小木林发布了新的文献求助10
12秒前
kle完成签到,获得积分10
12秒前
12秒前
宓人英完成签到,获得积分10
12秒前
12秒前
13秒前
wyx完成签到,获得积分10
14秒前
炙热沛白发布了新的文献求助10
14秒前
orixero应助一二采纳,获得10
15秒前
busuan发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
15秒前
19秒前
jingyu发布了新的文献求助10
20秒前
QH_Y完成签到,获得积分10
21秒前
研友_n2r2Kn完成签到,获得积分10
21秒前
Orange应助月流瓦采纳,获得10
21秒前
21秒前
太叔若南完成签到 ,获得积分10
23秒前
25秒前
Ava应助伶俐的如容采纳,获得20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602595
求助须知:如何正确求助?哪些是违规求助? 4687667
关于积分的说明 14850700
捐赠科研通 4684658
什么是DOI,文献DOI怎么找? 2539964
邀请新用户注册赠送积分活动 1506717
关于科研通互助平台的介绍 1471428