A deep segmentation network for crack detection with progressive and hierarchical context fusion

分割 计算机科学 背景(考古学) 人工智能 联营 块(置换群论) 模式识别(心理学) 图像分割 计算机视觉 地质学 数学 古生物学 几何学
作者
Lei Yang,Hanyun Huang,Shuyi Kong,Yanhong Liu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:75: 106886-106886 被引量:14
标识
DOI:10.1016/j.jobe.2023.106886
摘要

Accurate detection of crack defects in infrastructure is crucial to ensure their safety and extend their service life. However, the presence of complex backgrounds, various shapes and sizes of crack defects, incomplete discontinuous crack defects, and class imbalance makes this task challenging. Traditional image processing techniques are sensitive to image noise and may miss cracks due to weak textures, complex lighting conditions, and other similar objects on the pavement. In recent years, deep learning-based segmentation networks have been proposed for crack defect detection, but they still face challenges in high-precision crack segmentation due to insufficient local feature processing, information loss caused by pooling operations, and limited receptive fields. To address these issues, we propose an end-to-end deep crack segmentation network, called PHCF-Net, which incorporates progressive and hierarchical context fusion. Firstly, the proposed network consists of progressive context fusion (PCF) and hierarchical context fusion (HCF) blocks for effective aggregation of global and local context information. Secondly, a multi-scale context fusion (MCF) block is proposed for multi-scale context extraction and aggregation. Finally, in order to solve the information loss problem caused by pooling operations, a hierarchical context fusion (HCF) block is proposed for effective aggregation of the deep and shallow features. In addition, a multi-scale input unit is also applied to the proposed segmentation network to obtain more context information. To evaluate the performance of PHCF-Net, we have conducted experiments on two publicly available crack segmentation datasets and compared its performance with mainstream segmentation models. The results demonstrate that proposed PHCF-Net achieves better pixel-level crack detection results and outperforms other advanced segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
纯真保温杯完成签到 ,获得积分10
11秒前
BowieHuang应助苗笑卉采纳,获得10
12秒前
小谭完成签到 ,获得积分10
14秒前
Orange应助tcheng采纳,获得10
20秒前
苗笑卉完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
31秒前
Xzx1995完成签到 ,获得积分10
35秒前
风雨霖霖完成签到 ,获得积分10
44秒前
50秒前
tcheng发布了新的文献求助10
57秒前
lht完成签到 ,获得积分10
59秒前
black_cavalry完成签到,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
阳光醉山完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ranj完成签到,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
寄书长不达完成签到 ,获得积分10
1分钟前
失眠的笑翠完成签到 ,获得积分10
1分钟前
CY完成签到,获得积分10
2分钟前
77完成签到,获得积分10
2分钟前
开胃咖喱完成签到,获得积分10
2分钟前
changfox完成签到,获得积分10
2分钟前
gincle完成签到 ,获得积分10
2分钟前
高高的从波完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
hyman1218完成签到 ,获得积分10
2分钟前
白薇完成签到 ,获得积分10
2分钟前
2分钟前
nano完成签到 ,获得积分10
2分钟前
isedu完成签到,获得积分0
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539114
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566744
什么是DOI,文献DOI怎么找? 2503536
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020