A deep segmentation network for crack detection with progressive and hierarchical context fusion

分割 计算机科学 背景(考古学) 人工智能 联营 块(置换群论) 模式识别(心理学) 图像分割 计算机视觉 地质学 数学 几何学 古生物学
作者
Lei Yang,Hanyun Huang,Shuyi Kong,Yanhong Liu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:75: 106886-106886 被引量:14
标识
DOI:10.1016/j.jobe.2023.106886
摘要

Accurate detection of crack defects in infrastructure is crucial to ensure their safety and extend their service life. However, the presence of complex backgrounds, various shapes and sizes of crack defects, incomplete discontinuous crack defects, and class imbalance makes this task challenging. Traditional image processing techniques are sensitive to image noise and may miss cracks due to weak textures, complex lighting conditions, and other similar objects on the pavement. In recent years, deep learning-based segmentation networks have been proposed for crack defect detection, but they still face challenges in high-precision crack segmentation due to insufficient local feature processing, information loss caused by pooling operations, and limited receptive fields. To address these issues, we propose an end-to-end deep crack segmentation network, called PHCF-Net, which incorporates progressive and hierarchical context fusion. Firstly, the proposed network consists of progressive context fusion (PCF) and hierarchical context fusion (HCF) blocks for effective aggregation of global and local context information. Secondly, a multi-scale context fusion (MCF) block is proposed for multi-scale context extraction and aggregation. Finally, in order to solve the information loss problem caused by pooling operations, a hierarchical context fusion (HCF) block is proposed for effective aggregation of the deep and shallow features. In addition, a multi-scale input unit is also applied to the proposed segmentation network to obtain more context information. To evaluate the performance of PHCF-Net, we have conducted experiments on two publicly available crack segmentation datasets and compared its performance with mainstream segmentation models. The results demonstrate that proposed PHCF-Net achieves better pixel-level crack detection results and outperforms other advanced segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弩弩hannah完成签到,获得积分10
刚刚
刚刚
鹂鹂复霖霖完成签到,获得积分10
刚刚
香蕉觅云应助牵墨采纳,获得10
1秒前
科研通AI2S应助liyk采纳,获得10
1秒前
安安发布了新的文献求助10
2秒前
充电宝应助Yao采纳,获得10
2秒前
呀呀呀呀完成签到,获得积分10
2秒前
重要英姑完成签到,获得积分10
2秒前
鲸鱼完成签到 ,获得积分10
3秒前
3秒前
在水一方应助负蕲采纳,获得10
3秒前
科研通AI5应助旦皋采纳,获得10
3秒前
Tina完成签到 ,获得积分10
3秒前
幽默酸奶完成签到,获得积分20
4秒前
鞭霆发布了新的文献求助10
4秒前
赘婿应助桃桃采纳,获得10
4秒前
如梦如画完成签到,获得积分10
4秒前
Xinzz完成签到 ,获得积分10
4秒前
重要英姑发布了新的文献求助10
5秒前
Lvweieg完成签到,获得积分10
5秒前
事事顺利发布了新的文献求助10
6秒前
6秒前
knight发布了新的文献求助10
6秒前
caozhi完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助碧蓝雨安采纳,获得10
7秒前
7秒前
li完成签到 ,获得积分10
7秒前
结实半邪完成签到,获得积分10
8秒前
8秒前
柠檬九分酸完成签到,获得积分10
9秒前
9秒前
Silieze完成签到,获得积分10
9秒前
哆啦A涵发布了新的文献求助10
10秒前
222发布了新的文献求助10
10秒前
11秒前
科研通AI6应助jyyg采纳,获得30
11秒前
桥桥发布了新的文献求助10
11秒前
小二郎应助zjl采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426