A deep segmentation network for crack detection with progressive and hierarchical context fusion

分割 计算机科学 背景(考古学) 人工智能 联营 块(置换群论) 模式识别(心理学) 图像分割 计算机视觉 地质学 数学 几何学 古生物学
作者
Lei Yang,Hanyun Huang,Shuyi Kong,Yanhong Liu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:75: 106886-106886 被引量:14
标识
DOI:10.1016/j.jobe.2023.106886
摘要

Accurate detection of crack defects in infrastructure is crucial to ensure their safety and extend their service life. However, the presence of complex backgrounds, various shapes and sizes of crack defects, incomplete discontinuous crack defects, and class imbalance makes this task challenging. Traditional image processing techniques are sensitive to image noise and may miss cracks due to weak textures, complex lighting conditions, and other similar objects on the pavement. In recent years, deep learning-based segmentation networks have been proposed for crack defect detection, but they still face challenges in high-precision crack segmentation due to insufficient local feature processing, information loss caused by pooling operations, and limited receptive fields. To address these issues, we propose an end-to-end deep crack segmentation network, called PHCF-Net, which incorporates progressive and hierarchical context fusion. Firstly, the proposed network consists of progressive context fusion (PCF) and hierarchical context fusion (HCF) blocks for effective aggregation of global and local context information. Secondly, a multi-scale context fusion (MCF) block is proposed for multi-scale context extraction and aggregation. Finally, in order to solve the information loss problem caused by pooling operations, a hierarchical context fusion (HCF) block is proposed for effective aggregation of the deep and shallow features. In addition, a multi-scale input unit is also applied to the proposed segmentation network to obtain more context information. To evaluate the performance of PHCF-Net, we have conducted experiments on two publicly available crack segmentation datasets and compared its performance with mainstream segmentation models. The results demonstrate that proposed PHCF-Net achieves better pixel-level crack detection results and outperforms other advanced segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longlong发布了新的文献求助10
1秒前
无奈抽屉发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助150
1秒前
MichaelLi完成签到,获得积分20
1秒前
fqf发布了新的文献求助10
2秒前
容荣发布了新的文献求助20
3秒前
开放大开发布了新的文献求助10
4秒前
殷勤的紫槐发布了新的文献求助300
4秒前
好看的鸵鸟完成签到,获得积分10
8秒前
shann完成签到,获得积分10
11秒前
12秒前
yznfly应助现代的妍采纳,获得30
14秒前
科研通AI2S应助徐小徐采纳,获得10
15秒前
wuyd90发布了新的文献求助10
17秒前
阔达之卉发布了新的文献求助10
17秒前
薇夜发布了新的文献求助100
18秒前
我是老大应助轻松妙柏采纳,获得10
18秒前
19秒前
zplease发布了新的文献求助10
19秒前
22秒前
熊孩子发布了新的文献求助10
23秒前
dylaner完成签到,获得积分10
23秒前
Akim应助努力搞科研采纳,获得30
23秒前
Akim应助静越采纳,获得10
24秒前
24秒前
英姑应助小篮子采纳,获得10
24秒前
longlong完成签到,获得积分20
25秒前
悦耳小霜完成签到,获得积分10
25秒前
expuery完成签到,获得积分10
25秒前
李以苦发布了新的文献求助30
25秒前
嘻嘻发布了新的文献求助10
29秒前
隐形曼青应助小猪采纳,获得10
31秒前
wuyd90完成签到,获得积分20
32秒前
开放大开完成签到,获得积分20
33秒前
34秒前
fan发布了新的文献求助10
34秒前
36秒前
樊舒豪发布了新的文献求助10
36秒前
vanHaren完成签到,获得积分10
37秒前
JamesPei应助祯果粒采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341