A deep segmentation network for crack detection with progressive and hierarchical context fusion

分割 计算机科学 背景(考古学) 人工智能 联营 块(置换群论) 模式识别(心理学) 图像分割 计算机视觉 地质学 数学 几何学 古生物学
作者
Lei Yang,Hanyun Huang,Shuyi Kong,Yanhong Liu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:75: 106886-106886 被引量:14
标识
DOI:10.1016/j.jobe.2023.106886
摘要

Accurate detection of crack defects in infrastructure is crucial to ensure their safety and extend their service life. However, the presence of complex backgrounds, various shapes and sizes of crack defects, incomplete discontinuous crack defects, and class imbalance makes this task challenging. Traditional image processing techniques are sensitive to image noise and may miss cracks due to weak textures, complex lighting conditions, and other similar objects on the pavement. In recent years, deep learning-based segmentation networks have been proposed for crack defect detection, but they still face challenges in high-precision crack segmentation due to insufficient local feature processing, information loss caused by pooling operations, and limited receptive fields. To address these issues, we propose an end-to-end deep crack segmentation network, called PHCF-Net, which incorporates progressive and hierarchical context fusion. Firstly, the proposed network consists of progressive context fusion (PCF) and hierarchical context fusion (HCF) blocks for effective aggregation of global and local context information. Secondly, a multi-scale context fusion (MCF) block is proposed for multi-scale context extraction and aggregation. Finally, in order to solve the information loss problem caused by pooling operations, a hierarchical context fusion (HCF) block is proposed for effective aggregation of the deep and shallow features. In addition, a multi-scale input unit is also applied to the proposed segmentation network to obtain more context information. To evaluate the performance of PHCF-Net, we have conducted experiments on two publicly available crack segmentation datasets and compared its performance with mainstream segmentation models. The results demonstrate that proposed PHCF-Net achieves better pixel-level crack detection results and outperforms other advanced segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助hunter采纳,获得10
1秒前
CEJ发布了新的文献求助20
3秒前
hubery发布了新的文献求助10
4秒前
CodeCraft应助sakyadamo采纳,获得10
4秒前
YW发布了新的文献求助10
4秒前
4秒前
sy193625发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
orixero应助结实青文采纳,获得10
7秒前
8秒前
能干的荆完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
泷生发布了新的文献求助10
11秒前
归尘应助开心的傲蕾采纳,获得10
11秒前
研友_VZG7GZ应助开心的傲蕾采纳,获得30
11秒前
大个应助开心的傲蕾采纳,获得10
11秒前
大模型应助开心的傲蕾采纳,获得30
11秒前
上官若男应助开心的傲蕾采纳,获得10
11秒前
彭于晏应助开心的傲蕾采纳,获得30
11秒前
烟花应助开心的傲蕾采纳,获得10
11秒前
SciGPT应助开心的傲蕾采纳,获得10
11秒前
慕青应助开心的傲蕾采纳,获得30
11秒前
13秒前
14秒前
14秒前
hunter发布了新的文献求助10
14秒前
崔风机发布了新的文献求助10
16秒前
科研通AI2S应助月流瓦采纳,获得10
17秒前
彭于晏应助CEJ采纳,获得10
17秒前
17秒前
CodeCraft应助xh采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
新年发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901