A deep segmentation network for crack detection with progressive and hierarchical context fusion

分割 计算机科学 背景(考古学) 人工智能 联营 块(置换群论) 模式识别(心理学) 图像分割 计算机视觉 地质学 数学 几何学 古生物学
作者
Lei Yang,Hanyun Huang,Shuyi Kong,Yanhong Liu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:75: 106886-106886 被引量:14
标识
DOI:10.1016/j.jobe.2023.106886
摘要

Accurate detection of crack defects in infrastructure is crucial to ensure their safety and extend their service life. However, the presence of complex backgrounds, various shapes and sizes of crack defects, incomplete discontinuous crack defects, and class imbalance makes this task challenging. Traditional image processing techniques are sensitive to image noise and may miss cracks due to weak textures, complex lighting conditions, and other similar objects on the pavement. In recent years, deep learning-based segmentation networks have been proposed for crack defect detection, but they still face challenges in high-precision crack segmentation due to insufficient local feature processing, information loss caused by pooling operations, and limited receptive fields. To address these issues, we propose an end-to-end deep crack segmentation network, called PHCF-Net, which incorporates progressive and hierarchical context fusion. Firstly, the proposed network consists of progressive context fusion (PCF) and hierarchical context fusion (HCF) blocks for effective aggregation of global and local context information. Secondly, a multi-scale context fusion (MCF) block is proposed for multi-scale context extraction and aggregation. Finally, in order to solve the information loss problem caused by pooling operations, a hierarchical context fusion (HCF) block is proposed for effective aggregation of the deep and shallow features. In addition, a multi-scale input unit is also applied to the proposed segmentation network to obtain more context information. To evaluate the performance of PHCF-Net, we have conducted experiments on two publicly available crack segmentation datasets and compared its performance with mainstream segmentation models. The results demonstrate that proposed PHCF-Net achieves better pixel-level crack detection results and outperforms other advanced segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助20
刚刚
善学以致用应助艾亚亚采纳,获得10
2秒前
李爱国应助111采纳,获得10
2秒前
3秒前
3秒前
NexusExplorer应助霸气的又琴采纳,获得10
4秒前
4秒前
6秒前
Valan发布了新的文献求助10
7秒前
Akim应助俊逸的盛男采纳,获得10
7秒前
晨晨发布了新的文献求助10
7秒前
fan完成签到,获得积分10
7秒前
8秒前
8秒前
星星完成签到 ,获得积分10
8秒前
Stella应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
wxyshare应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小纪应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得10
9秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
乔治完成签到 ,获得积分10
10秒前
林烯发布了新的文献求助10
11秒前
浮游应助mmyhn采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915