A deep segmentation network for crack detection with progressive and hierarchical context fusion

分割 计算机科学 背景(考古学) 人工智能 联营 块(置换群论) 模式识别(心理学) 图像分割 计算机视觉 地质学 数学 几何学 古生物学
作者
Lei Yang,Hanyun Huang,Shuyi Kong,Yanhong Liu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:75: 106886-106886 被引量:14
标识
DOI:10.1016/j.jobe.2023.106886
摘要

Accurate detection of crack defects in infrastructure is crucial to ensure their safety and extend their service life. However, the presence of complex backgrounds, various shapes and sizes of crack defects, incomplete discontinuous crack defects, and class imbalance makes this task challenging. Traditional image processing techniques are sensitive to image noise and may miss cracks due to weak textures, complex lighting conditions, and other similar objects on the pavement. In recent years, deep learning-based segmentation networks have been proposed for crack defect detection, but they still face challenges in high-precision crack segmentation due to insufficient local feature processing, information loss caused by pooling operations, and limited receptive fields. To address these issues, we propose an end-to-end deep crack segmentation network, called PHCF-Net, which incorporates progressive and hierarchical context fusion. Firstly, the proposed network consists of progressive context fusion (PCF) and hierarchical context fusion (HCF) blocks for effective aggregation of global and local context information. Secondly, a multi-scale context fusion (MCF) block is proposed for multi-scale context extraction and aggregation. Finally, in order to solve the information loss problem caused by pooling operations, a hierarchical context fusion (HCF) block is proposed for effective aggregation of the deep and shallow features. In addition, a multi-scale input unit is also applied to the proposed segmentation network to obtain more context information. To evaluate the performance of PHCF-Net, we have conducted experiments on two publicly available crack segmentation datasets and compared its performance with mainstream segmentation models. The results demonstrate that proposed PHCF-Net achieves better pixel-level crack detection results and outperforms other advanced segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋呀发布了新的文献求助10
1秒前
爆米花应助迪迦奥特曼采纳,获得10
1秒前
1秒前
1秒前
小小小完成签到,获得积分10
2秒前
钮小童发布了新的文献求助10
2秒前
CodeCraft应助Tong采纳,获得10
2秒前
灵巧书蝶完成签到,获得积分10
2秒前
研友_VZG7GZ应助nieyy采纳,获得10
3秒前
万能图书馆应助倒立拉shi采纳,获得10
3秒前
NexusExplorer应助zcq采纳,获得10
3秒前
慕青应助踏月偷心采纳,获得10
3秒前
大模型应助子车半烟采纳,获得10
3秒前
明理战斗机完成签到,获得积分10
3秒前
善学以致用应助Steven采纳,获得10
4秒前
4秒前
hz发布了新的文献求助10
4秒前
4秒前
马小梁发布了新的文献求助10
6秒前
ATOM完成签到,获得积分10
6秒前
6秒前
7秒前
雷锋完成签到,获得积分10
8秒前
8秒前
tangying8642完成签到,获得积分10
8秒前
付博远发布了新的文献求助10
8秒前
wwy应助啦啦啦采纳,获得10
8秒前
8秒前
钮小童完成签到,获得积分10
9秒前
make完成签到 ,获得积分10
9秒前
111发布了新的文献求助30
9秒前
爆米花应助听闻采纳,获得10
9秒前
今后应助我是一只小豹子采纳,获得10
10秒前
文静千凡发布了新的文献求助10
10秒前
10秒前
风吹麦田举报Chen求助涉嫌违规
10秒前
10秒前
smottom应助haui采纳,获得10
11秒前
11秒前
小蘑菇应助lalala采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679