物理
拓扑绝缘体
哈密顿量(控制论)
Chern类
量子力学
拓扑(电路)
凝聚态物理
几何学
数学
组合数学
数学优化
作者
Xiaohan Wan,Siddhartha Sarkar,Shi‐Zeng Lin,Kai Sun
标识
DOI:10.1103/physrevlett.130.216401
摘要
We study flat bands and their topology in 2D materials with quadratic band crossing points under periodic strain. In contrast to Dirac points in graphene, where strain acts as a vector potential, strain for quadratic band crossing points serves as a director potential with angular momentum ℓ=2. We prove that when the strengths of the strain fields hit certain "magic" values, exact flat bands with C=±1 emerge at charge neutrality point in the chiral limit, in strong analogy to magic angle twisted-bilayer graphene. These flat bands have ideal quantum geometry for the realization of fractional Chern insulators, and they are always fragile topological. The number of flat bands can be doubled for certain point group, and the interacting Hamiltonian is exactly solvable at integer fillings. We further demonstrate the stability of these flat bands against deviations from the chiral limit, and discuss possible realization in 2D materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI