Investigating the mitigation of greenhouse gas emissions from municipal solid waste management using ant colony algorithm, Monte Carlo simulation and LCA approach in terms of EU Green Deal

温室气体 环境科学 蒙特卡罗方法 蚁群优化算法 生命周期评估 环境工程 背景(考古学) 城市固体废物 废物管理 工程类 计算机科学 算法 生产(经济) 数学 生物 统计 宏观经济学 古生物学 经济 生态学
作者
Hale Pamukçu,Pelin Yapıcıoğlu,Mehmet İ̇rfan Yeşilnacar
标识
DOI:10.1016/j.wmb.2023.05.001
摘要

This study majorly aimed to determine the effect of optimization on transport routes on the reduction of greenhouse gas (GHG) emissions from municipal solid waste management (MSM) within the scope of European Union (EU) Green Deal. Optimization of collection and transportation routes has been regarded as an effective methodology in order to mitigate the GHG emissions of municipal waste management, recently. Optimization of routes has been obtained using ant colony algorithm (ACA) and Monte Carlo simulation, in this study. In this context, this study investigated to reduce GHG emissions from municipal waste management using optimization of transportation routes in Diyarbakir city in Turkey. Firstly, GHG emissions which are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from waste collection and transport have been calculated using a new developed model based on Tier-I method. Then, Monte Carlo simulation has been used to figure out the GHG emissions. Finally, life cycle assessment (LCA) approach has been applied to determine the GHG emissions. According to the route optimization resulting ACA methodology, nearly 47.43% of reduction on each GHG emissions. Approximately, 58%, 38% and 51% of reduction on CO2, CH4 and N2O emissions respectively has been achieved, in the result of the route optimization using Monte Carlo simulation. The results of LCA methodology revealed that the reduction reached up 45.71% on GHG emissions in terms of Global Warming Potential (GWP). The reduction amounts have been overlapped with each other.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧荆发布了新的文献求助10
1秒前
和谐续完成签到 ,获得积分10
1秒前
李健应助是天使呢采纳,获得10
1秒前
1秒前
2秒前
香菜兔子完成签到,获得积分10
2秒前
茶艺大师づ完成签到,获得积分0
2秒前
蓝愿完成签到,获得积分10
2秒前
3秒前
努力的小狗屁完成签到,获得积分10
3秒前
3秒前
慕青应助彬彬采纳,获得10
4秒前
飘逸蘑菇关注了科研通微信公众号
4秒前
八十关注了科研通微信公众号
5秒前
5秒前
5秒前
6秒前
7秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
7秒前
xiaoputaor完成签到 ,获得积分10
8秒前
万能图书馆应助yana采纳,获得20
9秒前
兽医12138完成签到 ,获得积分10
9秒前
苏苏发布了新的文献求助10
9秒前
烯灯完成签到,获得积分10
10秒前
慕青应助哈哈采纳,获得10
10秒前
Ava应助朴素的鸡采纳,获得10
10秒前
852应助沧海泪采纳,获得10
10秒前
tao发布了新的文献求助10
10秒前
苏兴龙发布了新的文献求助10
10秒前
爱思考的我完成签到,获得积分10
11秒前
zzznznnn发布了新的文献求助10
11秒前
科研通AI5应助junzilan采纳,获得10
12秒前
12秒前
12秒前
田様应助SCI采纳,获得10
13秒前
无花果应助帅气惜霜采纳,获得10
14秒前
Qiuju发布了新的文献求助10
14秒前
Z小姐发布了新的文献求助10
15秒前
义气发卡完成签到 ,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794