Hierarchical Velocity Optimization for Connected Automated Vehicles With Cellular Vehicle-to-Everything Communication at Continuous Signalized Intersections

控制器(灌溉) 燃料效率 约束(计算机辅助设计) 计算机科学 制动距离 模型预测控制 控制理论(社会学) 汽车工程 模拟 工程类 控制(管理) 人工智能 农学 机械工程 生物 制动器
作者
Xizheng Zhang,Sichen Fang,Yongpeng Shen,Xiaofang Yuan,Zhangyu Lu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 2944-2955 被引量:228
标识
DOI:10.1109/tits.2023.3274580
摘要

The rapid development of intelligent connected technologies and cellular vehicle-to-everything communication (C-V2X) provide new opportunities to solve the connected automated vehicle (CAV) traffic problem for eco-driving at continuous signalized intersections. With C-V2X, a hierarchical velocity optimization design based on hybrid model predictive control technique (HVO-HMPC) is presented to reduce the fuel consumption and pollution emission. First, a distance–domain velocity optimization problem, with distance as the independent variable, was constructed. Second, a hybrid MPC scheme was developed by combining the multiple shooting method and MPC technique to calculate the optimal velocity profile of a high-level controller, which acts as the reference velocity in a low-level controller. Then, a car-following model was built, the low-level controller tracked the reference velocity with the predictive control as the backbone, and the optimal velocity was calculated while ensuring that the safety velocity constraint is satisfied. Next, the proposed HVO-HMPC was tested in Prescan, and the effect comparisons with different control methods in terms of fuel consumption, pollution emission, braking time, and number of braking applications were studied under different driving scenarios. Results show that once the maximal speed is limited to 40 km/h under short-period signals and 20 km/h under long-period signals, the HVO-HMPC effectively reduces fuel consumption by 27.21%, 25.89%, and pollution emissions by 25.3%, 25.97%, respectively, while achieving best performance. Finally, an experimental prototype is built to confirm the validity of the HVO-HMPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米糍发布了新的文献求助10
3秒前
10秒前
孤独振家完成签到,获得积分20
11秒前
糯米糍完成签到,获得积分10
12秒前
gu发布了新的文献求助10
15秒前
自觉远山完成签到 ,获得积分10
18秒前
20秒前
20秒前
果ghj完成签到,获得积分10
23秒前
ding应助佟韩采纳,获得10
23秒前
好想夏天发布了新的文献求助10
26秒前
果ghj发布了新的文献求助10
27秒前
张世奇发布了新的文献求助10
29秒前
32秒前
33秒前
阿东c完成签到 ,获得积分10
34秒前
天天快乐应助玄音采纳,获得10
35秒前
孟子豪发布了新的文献求助10
39秒前
yrh发布了新的文献求助10
40秒前
Owen应助zyfqpc采纳,获得20
43秒前
小苹果完成签到,获得积分10
43秒前
47秒前
XD发布了新的文献求助10
52秒前
53秒前
53秒前
ronin完成签到,获得积分10
53秒前
54秒前
55秒前
雨的诉说发布了新的文献求助10
57秒前
58秒前
58秒前
59秒前
59秒前
玄音发布了新的文献求助10
1分钟前
gu发布了新的文献求助20
1分钟前
1分钟前
等_c发布了新的文献求助10
1分钟前
2581022866发布了新的文献求助10
1分钟前
yuqinghui98发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290