Quality Grading of River Crabs Based on Machine Vision and GA-BPNN

人工智能 分类 人工神经网络 反向传播 多层感知器 计算机科学 模式识别(心理学) 机器视觉 质量(理念) 机器学习 算法 哲学 认识论
作者
Han Wang,Hong Zhu,Lishuai Bi,Wenjie Xu,Ning Song,Zhiqiang Zhou,Lanying Ding,Maohua Xiao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (11): 5317-5317 被引量:10
标识
DOI:10.3390/s23115317
摘要

The prices of different quality river crabs on the market can vary several times. Therefore, the internal quality identification and accurate sorting of crabs are particularly important for improving the economic benefits of the industry. Using existing sorting methods by labor and weight to meet the urgent needs of mechanization and intelligence in the crab breeding industry is difficult. Therefore, this paper proposes an improved BP neural network model based on a genetic algorithm, which can grade the crab quality. We comprehensively considered the four characteristics of crabs as the input variables of the model, namely gender, fatness, weight, and shell color of crabs, among which gender, fatness, and shell color were obtained by image processing technology, whereas weight is obtained using a load cell. First, mature machine vision technology is used to preprocess the images of the crab's abdomen and back, and then feature information is extracted from the images. Next, genetic and backpropagation algorithms are combined to establish a quality grading model for crab, and data training is conducted on the model to obtain the optimal threshold and weight values. Analysis of experimental results reveals that the average classification accuracy reaches 92.7%, which proves that this method can achieve efficient and accurate classification and sorting of crabs, successfully addressing market demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
3秒前
子车茗应助神奇的光子采纳,获得20
3秒前
小悦子完成签到,获得积分10
3秒前
ling2001完成签到,获得积分10
3秒前
4秒前
4秒前
DQ发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
ym完成签到,获得积分20
7秒前
7秒前
ding发布了新的文献求助10
7秒前
sisii完成签到,获得积分10
7秒前
星辰大海应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
RAnDw发布了新的文献求助10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
阿秧发布了新的文献求助30
9秒前
ding应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
yz发布了新的文献求助20
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
pandarion发布了新的文献求助10
11秒前
WWWWWMMMMMFFFFF完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775