Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology

等距映射 高光谱成像 人工智能 支持向量机 模式识别(心理学) 规范化(社会学) 主成分分析 卷积神经网络 计算机科学 数学 降维 非线性降维 人类学 社会学
作者
Lijia Xu,Yanjun Chen,Ao Feng,Xiaoshi Shi,Yanqi Feng,Yang Yuping,Yuchao Wang,Zhijun Wu,Zhiyong Zou,Ma Wei,Yong He,Ning Yang,Jing Feng,Yongpeng Zhao
出处
期刊:Environmental Research [Elsevier]
卷期号:232: 116389-116389 被引量:27
标识
DOI:10.1016/j.envres.2023.116389
摘要

Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
didi完成签到,获得积分10
1秒前
三人行完成签到,获得积分10
1秒前
KeldonHuang完成签到,获得积分10
1秒前
1秒前
Morris完成签到,获得积分10
1秒前
1秒前
Dgr完成签到,获得积分10
1秒前
2秒前
小二郎应助小5采纳,获得10
2秒前
传奇3应助chaofan采纳,获得10
2秒前
3秒前
粗暴的背包完成签到,获得积分10
3秒前
3秒前
从容白羊完成签到,获得积分10
3秒前
东方元语应助张哈哈采纳,获得20
3秒前
虚心求学完成签到,获得积分10
3秒前
3秒前
小邹完成签到,获得积分10
4秒前
慕青应助朴素浩然采纳,获得10
4秒前
平淡沛蓝完成签到 ,获得积分10
4秒前
桐桐应助芷莯采纳,获得10
5秒前
杨子航发布了新的文献求助10
5秒前
杨昌琪发布了新的文献求助10
5秒前
虎桔发布了新的文献求助10
5秒前
Zhangxinhao发布了新的文献求助10
6秒前
今后应助韩明轩采纳,获得10
6秒前
我来文献求助了完成签到,获得积分10
6秒前
欢呼的丁真完成签到,获得积分10
6秒前
迟梦琪发布了新的文献求助10
6秒前
不安的采白完成签到,获得积分10
6秒前
汉堡包应助阿修罗采纳,获得10
6秒前
6秒前
深海渔完成签到,获得积分20
7秒前
8秒前
王WJ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246