Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology

等距映射 高光谱成像 人工智能 支持向量机 模式识别(心理学) 规范化(社会学) 主成分分析 卷积神经网络 计算机科学 数学 降维 非线性降维 人类学 社会学
作者
Lijia Xu,Yanjun Chen,Ao Feng,Xiaoshi Shi,Yanqi Feng,Yang Yuping,Yuchao Wang,Zhijun Wu,Zhiyong Zou,Ma Wei,Yong He,Ning Yang,Jing Feng,Yongpeng Zhao
出处
期刊:Environmental Research [Elsevier]
卷期号:232: 116389-116389 被引量:13
标识
DOI:10.1016/j.envres.2023.116389
摘要

Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
silence完成签到,获得积分20
4秒前
科研通AI2S应助范老师采纳,获得10
6秒前
大模型应助云上人采纳,获得10
6秒前
阳光的草丛完成签到,获得积分10
7秒前
oneonlycrown完成签到,获得积分10
8秒前
希望天下0贩的0应助yujie采纳,获得10
8秒前
10秒前
俭朴的又菡完成签到,获得积分10
11秒前
sui完成签到,获得积分20
11秒前
12秒前
百香果bxg完成签到 ,获得积分10
13秒前
彭于晏应助阳光的草丛采纳,获得10
13秒前
13秒前
严姸完成签到 ,获得积分20
13秒前
与你完成签到 ,获得积分10
15秒前
15秒前
云泰悟发布了新的文献求助10
16秒前
lyb发布了新的文献求助10
18秒前
科研通AI2S应助wa采纳,获得10
18秒前
18秒前
云上人发布了新的文献求助10
18秒前
夏惋清完成签到 ,获得积分0
20秒前
跳跃野狼发布了新的文献求助10
21秒前
完美世界应助阿康学科研采纳,获得10
21秒前
林夕发布了新的文献求助10
21秒前
清水发布了新的文献求助10
24秒前
老肖应助连番西采纳,获得30
24秒前
路奇k发布了新的文献求助10
24秒前
俊逸依丝完成签到,获得积分10
25秒前
小青菜完成签到,获得积分10
26秒前
26秒前
深情安青应助一叶知秋采纳,获得10
28秒前
28秒前
酷波er应助活力的访卉采纳,获得10
30秒前
个木发布了新的文献求助10
30秒前
猪猪完成签到,获得积分20
31秒前
烟花应助跳跃野狼采纳,获得10
31秒前
852应助跳跃野狼采纳,获得10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136697
求助须知:如何正确求助?哪些是违规求助? 2787724
关于积分的说明 7782985
捐赠科研通 2443808
什么是DOI,文献DOI怎么找? 1299415
科研通“疑难数据库(出版商)”最低求助积分说明 625444
版权声明 600954