Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology

等距映射 高光谱成像 人工智能 支持向量机 模式识别(心理学) 规范化(社会学) 主成分分析 卷积神经网络 计算机科学 数学 降维 非线性降维 人类学 社会学
作者
Lijia Xu,Yanjun Chen,Ao Feng,Xiaoshi Shi,Yanqi Feng,Yang Yuping,Yuchao Wang,Zhijun Wu,Zhiyong Zou,Ma Wei,Yong He,Ning Yang,Jing Feng,Yongpeng Zhao
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116389-116389 被引量:27
标识
DOI:10.1016/j.envres.2023.116389
摘要

Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴起为你完成签到,获得积分20
刚刚
很酷的妞子完成签到 ,获得积分10
刚刚
abcdefg完成签到,获得积分10
1秒前
优秀的傲南完成签到,获得积分10
2秒前
柚子完成签到,获得积分10
2秒前
qi完成签到,获得积分10
2秒前
3秒前
一只小鲨鱼完成签到,获得积分10
4秒前
Junewill完成签到,获得积分10
4秒前
领导范儿应助马喽打工仔采纳,获得10
4秒前
5秒前
5秒前
Wind0240完成签到,获得积分10
6秒前
alex完成签到,获得积分10
6秒前
ChenChen完成签到,获得积分20
6秒前
养乐多完成签到,获得积分10
6秒前
7秒前
7秒前
淡定自中完成签到 ,获得积分10
7秒前
生动初蓝完成签到,获得积分10
7秒前
胡杨树2006完成签到,获得积分10
8秒前
哈基米德应助dream采纳,获得10
8秒前
oneonlycrown完成签到,获得积分10
9秒前
9秒前
Lyw发布了新的文献求助10
9秒前
lidd完成签到,获得积分10
9秒前
快乐的麦片完成签到 ,获得积分10
10秒前
10秒前
FashionBoy应助隐形的笑白采纳,获得10
10秒前
10秒前
希望天下0贩的0应助h7nho采纳,获得10
10秒前
科研混子表锅完成签到,获得积分10
10秒前
xuexue发布了新的文献求助10
11秒前
cyz完成签到,获得积分10
11秒前
12秒前
勤奋旭尧完成签到,获得积分10
12秒前
zzx完成签到,获得积分10
13秒前
nick完成签到,获得积分10
13秒前
落寞白曼完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044