清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology

等距映射 高光谱成像 人工智能 支持向量机 模式识别(心理学) 规范化(社会学) 主成分分析 卷积神经网络 计算机科学 数学 降维 非线性降维 人类学 社会学
作者
Lijia Xu,Yanjun Chen,Ao Feng,Xiaoshi Shi,Yanqi Feng,Yang Yuping,Yuchao Wang,Zhijun Wu,Zhiyong Zou,Ma Wei,Yong He,Ning Yang,Jing Feng,Yongpeng Zhao
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116389-116389 被引量:27
标识
DOI:10.1016/j.envres.2023.116389
摘要

Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助快乐的冰岚采纳,获得10
4秒前
cheney完成签到 ,获得积分10
7秒前
weihe完成签到,获得积分10
16秒前
19秒前
slzhao发布了新的文献求助10
23秒前
笔墨纸砚完成签到 ,获得积分10
28秒前
44秒前
酷酷小子完成签到 ,获得积分0
1分钟前
文献完成签到 ,获得积分10
1分钟前
1分钟前
萌大叔发布了新的文献求助10
1分钟前
培培完成签到 ,获得积分10
1分钟前
末末完成签到 ,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
upupup完成签到 ,获得积分10
2分钟前
慧子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
MOREMO完成签到,获得积分10
2分钟前
laoli2022完成签到,获得积分10
2分钟前
一见憘完成签到 ,获得积分10
3分钟前
3分钟前
JESSE发布了新的文献求助10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
fabea完成签到,获得积分10
3分钟前
江三村完成签到 ,获得积分0
3分钟前
3分钟前
Arvin发布了新的文献求助10
3分钟前
3分钟前
萧萧完成签到,获得积分10
3分钟前
4分钟前
crystaler完成签到 ,获得积分10
4分钟前
Arvin完成签到,获得积分10
4分钟前
4分钟前
samuel发布了新的文献求助10
4分钟前
1中蓝完成签到 ,获得积分10
4分钟前
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
儒雅黑裤完成签到 ,获得积分10
4分钟前
df完成签到 ,获得积分10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211911
求助须知:如何正确求助?哪些是违规求助? 4388251
关于积分的说明 13663692
捐赠科研通 4248578
什么是DOI,文献DOI怎么找? 2331051
邀请新用户注册赠送积分活动 1328776
关于科研通互助平台的介绍 1281955