亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology

等距映射 高光谱成像 人工智能 支持向量机 模式识别(心理学) 规范化(社会学) 主成分分析 卷积神经网络 计算机科学 数学 降维 非线性降维 人类学 社会学
作者
Lijia Xu,Yanjun Chen,Ao Feng,Xiaoshi Shi,Yanqi Feng,Yang Yuping,Yuchao Wang,Zhijun Wu,Zhiyong Zou,Ma Wei,Yong He,Ning Yang,Jing Feng,Yongpeng Zhao
出处
期刊:Environmental Research [Elsevier]
卷期号:232: 116389-116389 被引量:27
标识
DOI:10.1016/j.envres.2023.116389
摘要

Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
汉堡包应助Developing_human采纳,获得10
14秒前
16秒前
24秒前
53秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
暴躁的奇异果完成签到,获得积分10
2分钟前
2分钟前
领导范儿应助Ming采纳,获得10
2分钟前
2分钟前
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
George发布了新的文献求助10
3分钟前
3分钟前
Ming发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Enso完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
阿里给阿里的求助进行了留言
5分钟前
小透明发布了新的文献求助10
5分钟前
5分钟前
SUNny发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491