作者
Sheue Ni Ong,Boon Chin Tan,Kousuke Hanada,Chin Hai Teo
摘要
Drought is a major abiotic stress that influences rice production. Although the transcriptomic data of rice against drought is widely available, the regulation of small open reading frames (sORFs) in response to drought stress in rice is yet to be investigated. Different levels of drought stress have different regulatory mechanisms in plants. In this study, drought stress was imposed on four-leaf stage rice, divided into two treatments, 40% and 30% soil moisture content (SMC). The RNAs of the samples were extracted, followed by the RNA sequencing analysis on their sORF expression changes under 40%_SMC and 30%_SMC, and lastly, the expression was validated through NanoString. A total of 122 and 143 sORFs were differentially expressed (DE) in 40%_SMC and 30%_SMC, respectively. In 40%_SMC, 69 sORFs out of 696 (9%) DEGs were found to be upregulated. On the other hand, 69 sORFs out of 449 DEGs (11%) were significantly downregulated. The trend seemed to be higher in 30%_SMC, where 112 (12%) sORFs were found to be upregulated from 928 significantly upregulated DEGs. However, only 8% (31 sORFs out of 385 DEGs) sORFs were downregulated in 30%_SMC. Among the identified sORFs, 110 sORFs with high similarity to rice proteome in the PsORF database were detected in 40%_SMC, while 126 were detected in 30%_SMC. The Gene Ontology (GO) enrichment analysis of DE sORFs revealed their involvement in defense-related biological processes, such as defense response, response to biotic stimulus, and cellular homeostasis, whereas enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that DE sORFs were associated with tryptophan and phenylalanine metabolisms. Several DE sORFs were identified, including the top five sORFs (OsisORF_3394, OsisORF_0050, OsisORF_3007, OsisORF_6407, and OsisORF_7805), which have yet to be characterised. Since these sORFs were responsive to drought stress, they might hold significant potential as targets for future climate-resilient rice development.