Three-Dimensional Assemblages of Metal Silicate for Catalytic CO2 Conversion to Methanol and Adsorptive Pollutant Removal

初湿浸渍 催化作用 高分辨率透射电子显微镜 硅酸盐 化学工程 材料科学 甲醇 无机化学 核化学 化学 选择性 透射电子显微镜 纳米技术 冶金 有机化学 工程类
作者
Bo Sun,Alvin M. H. Lim,Hua Chun Zeng
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (22): 8326-8336 被引量:3
标识
DOI:10.1021/acssuschemeng.3c00960
摘要

Morphological transformation was performed on Stöber silica nanospheres (ca. 270 nm in diameter) and transmuted into either ZnSiO (zinc silicate) nanoflowers or MgSiO (magnesium silicate) nanoflowers (600–800 nm in diameter) through a facile hydrothermal process. The zinc silicate materials were then chosen for incipient wetness impregnation to imbue them with different levels of Cu and Zn doping due to the well-established elemental synergy of Cu and Zn toward methanol synthesis via CO2 hydrogenation. Characterization results concur that zinc silicate nanoflowers loaded with copper(II) oxide were formed after incipient wetness impregnation. Three as-synthesized catalyst candidates with different copper loadings were then evaluated for CO2 hydrogenation and compared against an industrial catalyst. After the reaction, high-resolution transmission electron microscopy (HRTEM) with energy-dispersive X-ray (EDX) elemental mapping reveal that petite Cu nanoparticles formed on the petals of the impregnated zinc silicate nanoflowers. Experimental results show that all catalyst materials have an exceptional high methanol selectivity, with overall performance exceeding that of the industrial catalyst at per Cu basis. Both ZnSiO and MgSiO were also evaluated through a simple methylene blue adsorption test. Hence, through deliberate morphological control and chemical transformation, superficially inert Stöber silica nanospheres were functionalized into transition- and earth-alkaline metal silicates, which exhibit catalytic and adsorptive properties with a nanoflower morphology that prevents interstacking of nanosheets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助hhan采纳,获得30
刚刚
1秒前
Owen应助GSQ采纳,获得10
2秒前
2秒前
2秒前
2秒前
Sober完成签到 ,获得积分10
3秒前
3秒前
duanduan123发布了新的文献求助10
5秒前
华新完成签到,获得积分10
6秒前
糊涂的万完成签到,获得积分10
7秒前
邓娇叶发布了新的文献求助10
7秒前
深情世立发布了新的文献求助10
7秒前
万能图书馆应助小乐采纳,获得10
8秒前
爆米花应助飞快的寒香采纳,获得10
8秒前
11秒前
情怀应助冲浪男孩226采纳,获得10
11秒前
13秒前
干净的媚颜完成签到 ,获得积分20
14秒前
15秒前
BiuBiu怪完成签到,获得积分10
15秒前
15秒前
漂亮孤兰完成签到 ,获得积分10
16秒前
鲤鱼绿旋发布了新的文献求助10
17秒前
Qiu发布了新的文献求助10
18秒前
shiyongli完成签到,获得积分10
20秒前
Sam应助邓娇叶采纳,获得10
21秒前
小蘑菇应助邓娇叶采纳,获得10
21秒前
qiuyue完成签到,获得积分10
21秒前
21秒前
龟龟发布了新的文献求助10
21秒前
一一应助科研通管家采纳,获得10
22秒前
22秒前
duanduan123完成签到,获得积分10
22秒前
Starwalker应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
22秒前
慕青应助科研通管家采纳,获得10
23秒前
23秒前
一一应助科研通管家采纳,获得100
23秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611