Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的初蓝完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
东方元语发布了新的文献求助10
2秒前
JamesPei应助独特的如雪采纳,获得10
2秒前
2秒前
熊大哥完成签到,获得积分10
2秒前
shinn完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
iNk应助xh采纳,获得10
3秒前
伶俐幻波完成签到,获得积分20
3秒前
NexusExplorer应助Lagom采纳,获得10
4秒前
SciGPT应助yingxutravel采纳,获得10
4秒前
SciGPT应助顺心的芝麻采纳,获得10
4秒前
迷路谷蓝发布了新的文献求助10
4秒前
123456发布了新的文献求助10
4秒前
5秒前
5秒前
脑洞疼应助机灵冬天采纳,获得30
5秒前
爱笑夜蕾完成签到,获得积分10
6秒前
Godweless完成签到,获得积分10
6秒前
深情安青应助明亮谷波采纳,获得10
6秒前
酷波er应助SY采纳,获得10
6秒前
白桦林发布了新的文献求助10
6秒前
July发布了新的文献求助10
6秒前
科研通AI6.1应助杨晓蓉采纳,获得10
7秒前
7秒前
song完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
王留勇完成签到,获得积分10
8秒前
8秒前
Justin发布了新的文献求助10
9秒前
田様应助疯狂的雁梅采纳,获得10
10秒前
爱搬玉米完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760209
求助须知:如何正确求助?哪些是违规求助? 5523899
关于积分的说明 15396860
捐赠科研通 4897047
什么是DOI,文献DOI怎么找? 2634010
邀请新用户注册赠送积分活动 1582088
关于科研通互助平台的介绍 1537582