清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
3秒前
牛奶开水完成签到 ,获得积分10
26秒前
褚明雪完成签到,获得积分10
27秒前
41秒前
陈无敌完成签到 ,获得积分10
46秒前
1分钟前
1分钟前
CipherSage应助喝奶茶睡不着采纳,获得10
1分钟前
1分钟前
2分钟前
细心的语蓉完成签到,获得积分10
2分钟前
完美耦合发布了新的文献求助50
2分钟前
2分钟前
清爽明辉发布了新的文献求助10
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
鹏826完成签到 ,获得积分10
3分钟前
九九完成签到,获得积分10
3分钟前
1234567完成签到,获得积分10
4分钟前
英姑应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
carrot完成签到 ,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
6分钟前
科研搬运工完成签到,获得积分10
7分钟前
chi完成签到 ,获得积分10
8分钟前
666完成签到 ,获得积分10
8分钟前
heolmes完成签到 ,获得积分10
9分钟前
经纲完成签到 ,获得积分0
9分钟前
xiao完成签到 ,获得积分10
9分钟前
9分钟前
西红柿不吃皮完成签到 ,获得积分10
9分钟前
半岛岛发布了新的文献求助10
9分钟前
jyy应助科研通管家采纳,获得10
10分钟前
和谐的夏岚完成签到 ,获得积分10
10分钟前
负责冰海完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
传奇3应助喝奶茶睡不着采纳,获得30
11分钟前
HHW完成签到,获得积分10
11分钟前
火箭完成签到,获得积分10
11分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139615
求助须知:如何正确求助?哪些是违规求助? 2790490
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176