Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaomi发布了新的文献求助10
刚刚
加油女王完成签到,获得积分10
刚刚
于冰清完成签到,获得积分10
刚刚
猪猪猪完成签到,获得积分20
1秒前
1秒前
芪苓完成签到,获得积分20
2秒前
wyz完成签到,获得积分20
2秒前
2秒前
Mic应助XHX采纳,获得10
3秒前
3秒前
深情安青应助www采纳,获得10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
顾矜应助明理的绮南采纳,获得10
4秒前
无可反驳发布了新的文献求助10
4秒前
5秒前
Maxine完成签到 ,获得积分10
5秒前
我没钱完成签到 ,获得积分10
5秒前
wwwwww完成签到,获得积分20
5秒前
是赵先森呀完成签到 ,获得积分10
6秒前
Wguan发布了新的文献求助10
7秒前
8秒前
Hello应助嘿嘿啊哈采纳,获得10
8秒前
8秒前
淡淡化蛹发布了新的文献求助30
9秒前
科研一号发布了新的文献求助10
9秒前
努力学习完成签到,获得积分10
10秒前
没有下不到的文献完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
烟花应助bmj采纳,获得10
11秒前
大模型应助坦率晓霜采纳,获得10
12秒前
12秒前
12秒前
pluto应助ichia采纳,获得10
12秒前
wwwwww关注了科研通微信公众号
13秒前
15秒前
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186