Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kidmuse完成签到,获得积分10
1秒前
songyu完成签到,获得积分10
2秒前
开始啦完成签到,获得积分10
3秒前
3秒前
黑咖啡完成签到,获得积分10
5秒前
yyd完成签到,获得积分10
5秒前
杨杨杨发布了新的文献求助20
6秒前
BareBear应助科研通管家采纳,获得10
6秒前
star应助科研通管家采纳,获得10
7秒前
wu应助科研通管家采纳,获得10
7秒前
star应助科研通管家采纳,获得10
7秒前
7秒前
Clover04应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Clover04应助科研通管家采纳,获得10
7秒前
star应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
betty2009完成签到,获得积分10
13秒前
还单身的涵梅完成签到 ,获得积分10
15秒前
情怀应助SKY采纳,获得10
17秒前
jiaojaioo完成签到,获得积分10
17秒前
微卫星不稳定完成签到 ,获得积分0
18秒前
锅包又完成签到 ,获得积分10
18秒前
ldy完成签到 ,获得积分10
18秒前
疯狂的慕灵完成签到 ,获得积分10
19秒前
24秒前
Ning00000完成签到 ,获得积分10
24秒前
X_Nano发布了新的文献求助10
28秒前
28秒前
e麓绝尘完成签到 ,获得积分10
29秒前
32秒前
HAL9000完成签到,获得积分10
33秒前
wss完成签到 ,获得积分10
34秒前
清爽达完成签到 ,获得积分10
34秒前
遇见完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304453
求助须知:如何正确求助?哪些是违规求助? 4450972
关于积分的说明 13850191
捐赠科研通 4337994
什么是DOI,文献DOI怎么找? 2381744
邀请新用户注册赠送积分活动 1376791
关于科研通互助平台的介绍 1343965