Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助犹豫的踏歌采纳,获得10
2秒前
尊敬的寄松完成签到,获得积分10
2秒前
3秒前
kyle发布了新的文献求助40
4秒前
4秒前
endlessloop发布了新的文献求助10
4秒前
善学以致用应助奥利奥采纳,获得50
5秒前
吴雨茜完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
一直很安静完成签到,获得积分10
6秒前
7秒前
科研完成签到,获得积分10
8秒前
zqingqing发布了新的文献求助10
8秒前
GPTea完成签到,获得积分0
8秒前
lbj发布了新的文献求助30
9秒前
9秒前
endlessloop完成签到,获得积分20
10秒前
Yulb发布了新的文献求助10
12秒前
爆米花应助闫素肃采纳,获得10
12秒前
tsuki完成签到 ,获得积分10
13秒前
李俊枫发布了新的文献求助30
13秒前
13秒前
13秒前
xyx发布了新的文献求助10
14秒前
lightman完成签到,获得积分10
14秒前
14秒前
光亮的秋白完成签到 ,获得积分10
15秒前
Dreamable完成签到,获得积分10
15秒前
外向烤鸡完成签到,获得积分10
16秒前
17秒前
17秒前
远志发布了新的文献求助10
18秒前
脑洞疼应助Dreamable采纳,获得10
19秒前
19秒前
20秒前
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
吼吼应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779