Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王某发布了新的文献求助10
刚刚
刚刚
飞飞鱼发布了新的文献求助10
1秒前
乐乐应助优美紫槐采纳,获得10
1秒前
2秒前
2秒前
2秒前
解文哲完成签到,获得积分10
2秒前
3秒前
549完成签到,获得积分10
3秒前
DQ发布了新的文献求助10
3秒前
张伟发布了新的文献求助10
3秒前
Lhh发布了新的文献求助10
4秒前
PH0225发布了新的文献求助10
5秒前
5秒前
无聊的成败完成签到,获得积分20
6秒前
7秒前
求文发布了新的文献求助10
7秒前
机灵柚子应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
优美紫槐应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
机灵柚子应助科研通管家采纳,获得10
8秒前
柏林寒冬应助科研通管家采纳,获得10
8秒前
颜林林发布了新的文献求助10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
nina发布了新的文献求助10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
8秒前
尊敬冬萱完成签到 ,获得积分10
8秒前
天天发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142