Abstract 9495: Deep Learning Algorithm for Predicting Atrial Fibrillation Based on Chest Radiography

医学 心房颤动 接收机工作特性 窦性心律 射线照相术 左束支阻滞 试验装置 心脏病学 卷积神经网络 心电图 内科学 深度学习 人工智能 放射科 心力衰竭 算法 计算机科学
作者
Yujeong Kim,SungA Bae,Dukyong Yoon
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.9495
摘要

Introduction: Atrial fibrillation (AF) is a common risk factor for stroke and heart failure, with gradually increasing prevalence. AF is usually diagnosed on the basis of electrocardiography. Chest radiography is commonly performed as a screening test among patients with cardiac diseases but cannot be used to detect AF because of its unclear radiographical findings.Hypothesis: We hypothesize that deep learning methods, particularly convolutional neural networks (CNN), can be used to detect AF on chest radiographs. Methods: Chest radiographs used for training were obtained from Yongin Severance Hospital, South Korea. A total of 11,044 images acquired from patients with normal sinus rhythm or AF were used, whereas images from patients with other rhythms, such as paced rhythm or left bundle branch block, were excluded. The training, validation, and test datasets were split 8:1:1, and Resnet was applied as a model architecture. The accuracy, area under the receiver operating characteristic (ROC) curve, area under the precision-recall curve (PRC), precision, and recall were calculated. Gradient-weighted class activation mapping (Grad-CAM) was used to determine the area focused on by the model to predict AF. Results: AF was detected from chest radiographs with an accuracy, AUC, and PRC of 0.95, 0.81 and 0.39 in the validation set, respectively, and 0.94, 0.76, and 0.35 in the test set, respectively (Figure 1-A, B). Grad-CAM showed that the highest predictive value images from each dataset focused on the heart and its border, while the lowest predictive value images focused on the ribs (Figure 1-C, D, E, F). Conclusions: Deep learning algorithms can be used to detect AF on chest radiographs, which can be used as a screening tool for AF patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助F17的小太阳采纳,获得10
刚刚
酷波er应助gdgk采纳,获得10
刚刚
尔尔完成签到,获得积分10
刚刚
ZJFL完成签到,获得积分10
刚刚
天天快乐应助思路三采纳,获得10
1秒前
小苏打完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
调皮蛋发布了新的文献求助10
2秒前
2秒前
2秒前
blessed兰完成签到,获得积分10
2秒前
maybe完成签到,获得积分10
3秒前
3秒前
fortune发布了新的文献求助10
3秒前
hi_zhanghao发布了新的文献求助10
3秒前
kiki完成签到,获得积分10
3秒前
3秒前
晨纯完成签到,获得积分10
4秒前
yznfly举报小冰同学求助涉嫌违规
4秒前
SCI完成签到,获得积分10
4秒前
4秒前
大模型应助福林古斯采纳,获得30
4秒前
5秒前
元气少女猪刚虾完成签到,获得积分10
5秒前
科研小白完成签到 ,获得积分10
5秒前
idemipere完成签到,获得积分10
5秒前
李健的小迷弟应助张益龙采纳,获得10
6秒前
852应助holycale采纳,获得10
6秒前
QMZ完成签到,获得积分10
6秒前
zt涛完成签到 ,获得积分10
6秒前
快乐的一二完成签到,获得积分10
6秒前
南枝完成签到,获得积分10
7秒前
7秒前
小二郎应助瘦瘦初珍采纳,获得10
8秒前
思路三完成签到,获得积分10
8秒前
9秒前
kuangweiming完成签到,获得积分10
9秒前
调皮蛋完成签到,获得积分10
9秒前
英俊的铭应助风中的语堂采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4958572
求助须知:如何正确求助?哪些是违规求助? 4219535
关于积分的说明 13136154
捐赠科研通 4002734
什么是DOI,文献DOI怎么找? 2190451
邀请新用户注册赠送积分活动 1205175
关于科研通互助平台的介绍 1116789