Machine learning-based models to predict one-year mortality among Chinese older patients with coronary artery disease combined with impaired glucose tolerance or diabetes mellitus

医学 内科学 冠状动脉疾病 2型糖尿病 糖尿病 糖耐量受损 糖化血红素 机器学习 心脏病学 2型糖尿病 内分泌学 计算机科学
作者
Yan Li,Lixun Guan,Chaoxue Ning,Pei Zhang,Yali Zhao,Qiong Liu,Ping Ping,Shihui Fu
出处
期刊:Cardiovascular Diabetology [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12933-023-01854-z
摘要

Abstract Purpose An accurate prediction of survival prognosis is beneficial to guide clinical decision-making. This prospective study aimed to develop a model to predict one-year mortality among older patients with coronary artery disease (CAD) combined with impaired glucose tolerance (IGT) or diabetes mellitus (DM) using machine learning techniques. Methods A total of 451 patients with CAD combined with IGT and DM were finally enrolled, and those patients randomly split 70:30 into training cohort (n = 308) and validation cohort (n = 143). Results The one-year mortality was 26.83%. The least absolute shrinkage and selection operator (LASSO) method and ten-fold cross-validation identified that seven characteristics were significantly associated with one-year mortality with creatine, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and chronic heart failure being risk factors and hemoglobin, high density lipoprotein cholesterol, albumin, and statins being protective factors. The gradient boosting machine model outperformed other models in terms of Brier score (0.114) and area under the curve (0.836). The gradient boosting machine model also showed favorable calibration and clinical usefulness based on calibration curve and clinical decision curve. The Shapley Additive exPlanations (SHAP) found that the top three features associated with one-year mortality were NT-proBNP, albumin, and statins. The web-based application could be available at https://starxueshu-online-application1-year-mortality-main-49cye8.streamlitapp.com/ . Conclusions This study proposes an accurate model to stratify patients with a high risk of one-year mortality. The gradient boosting machine model demonstrates promising prediction performance. Some interventions to affect NT-proBNP and albumin levels, and statins, are beneficial to improve survival outcome among patients with CAD combined with IGT or DM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝完成签到 ,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
6秒前
阳光的思山完成签到 ,获得积分10
9秒前
www发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
15秒前
Heart_of_Stone完成签到 ,获得积分10
19秒前
21秒前
77完成签到 ,获得积分10
22秒前
ZH完成签到 ,获得积分10
23秒前
furin001完成签到,获得积分10
26秒前
小白完成签到 ,获得积分10
33秒前
37秒前
张海新完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
孙刚完成签到 ,获得积分10
41秒前
42秒前
Akim应助feifan159采纳,获得10
46秒前
alter_mu发布了新的文献求助10
49秒前
我本人lrx完成签到 ,获得积分10
53秒前
大模型应助alter_mu采纳,获得10
57秒前
量子星尘发布了新的文献求助10
58秒前
grace完成签到 ,获得积分10
1分钟前
子车茗应助轻松的蜜粉采纳,获得50
1分钟前
1分钟前
1分钟前
alter_mu完成签到,获得积分10
1分钟前
feifan159发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
轻松的蜜粉完成签到,获得积分10
1分钟前
热情爆米花完成签到 ,获得积分10
1分钟前
1分钟前
整齐百褶裙完成签到 ,获得积分10
1分钟前
宁123完成签到 ,获得积分10
1分钟前
爱听歌的青筠完成签到,获得积分10
1分钟前
乐正怡完成签到 ,获得积分10
1分钟前
Spice完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555124
求助须知:如何正确求助?哪些是违规求助? 4639662
关于积分的说明 14656533
捐赠科研通 4581657
什么是DOI,文献DOI怎么找? 2512907
邀请新用户注册赠送积分活动 1487593
关于科研通互助平台的介绍 1458623