支流
δ18O
硝酸盐
环境科学
流域
水文学(农业)
氮同位素
稳定同位素比值
氮气
δ15N
环境化学
氧同位素
δ13C
地质学
生态学
化学
地理
生物
地球化学
物理
地图学
岩土工程
有机化学
量子力学
作者
Wenjing Guo,Dong Zhang,Hao Jiang,Yangyang Wu,G. Zhang,Huizhen Duan,Mei Xu,Bo Ma,Hao Chen,Xingyu Huang
出处
期刊:PubMed
日期:2023-06-08
卷期号:44 (6): 3206-3216
标识
DOI:10.13227/j.hjkx.202207071
摘要
The impacts of natural processes and anthropogenic input on riverine nitrate (NO-3) could be identified by NO-3 concentrations and nitrogen and oxygen isotope ratios (δ15N-NO-3 and δ18O-NO-3); however, the effects of variable land use on riverine NO-3 sources and transformations remain unclear. In particular, the human impacts on riverine NO-3 in mountain areas are still unknown. The Yihe River and Luohe River were used to elucidate this question due to their spatially heterogeneous land use. Hydrochemical compositions, water isotope ratios (δD-H2O and δ18O-H2O), and δ15N-NO-3 and δ18O-NO-3 values were utilized to constrain the NO-3 sources and transformations affected by different land use types. The results indicated that ① the mean nitrate concentrations in the Yihe River and Luohe River waters were 6.57 and 9.29 mg·L-1, the mean values of δ15N-NO-3 were 9.6‰ and 10.4‰, and the average δ18O-NO-3 values were -2.2‰ and -2.7‰, respectively. Based on the analysis of δ15N-NO-3 and δ18O-NO-3 values, the NO-3 in the Yihe and Luohe Rivers were derived from multiple sources, and nitrogen removal existed in the Luohe River, but the biological removal in the Yihe River was weak. ② The contributions of different nitrate sources were calculated using a Bayesian isotope mixing model (BIMM) based on δ15N-NO-3 and δ18O-NO-3 values of river water in the mainstream and tributaries with spatial locations. The results revealed that sewage and manure had major impacts on riverine nitrate in the upper reaches of both the Luohe River and Yihe River, where forest vegetation was widely distributed. However, the contributions from soil organic nitrogen and chemical fertilizer were higher in the upper reaches than in downstream ones. The contributions of sewage and manure still increased in the downstream reaches. Our results confirmed the primary impacts of point sources, e.g., sewage and manure, on riverine nitrate in the studied area, and the contributions of nonpoint sources, e.g., chemical fertilizer, had not increased as the agricultural activities elevated the downstream. Therefore, more attention should be paid to point source pollution treatment, and the high-quality development of ecological civilization in the Yellow River Basin should be maintained.
科研通智能强力驱动
Strongly Powered by AbleSci AI