亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward sustainable culture media: Using artificial intelligence to optimize reduced-serum formulations for cultivated meat

响应面法 人工神经网络 生物技术 生化工程 遗传算法 机器学习 计算机科学 人工智能 工程类 数学 食品科学 生物
作者
Amin Nikkhah,Abbas Rohani,Mohammad Zarei,Ajay Kulkarni,Feras A. Batarseh,Nicole Tichenor Blackstone,Reza Ovissipour
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:894: 164988-164988 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.164988
摘要

When considering options for future foods, cell culture approaches are at the fore, however, culture media to support the process has been identified as a significant contributor to the overall global warming potential (GWP) and cost of cultivated meat production. To address this issue, an artificial intelligence-based approach was applied to simultaneously optimize the GWP, cost, and cell growth rate of a reduced-serum culture media formulation for a zebrafish (ZEM2S cell line) cultivated meat production system. Response surface methodology (RSM) was used to design the experiments, with seven components - IGF, FGF, TGF, PDGF, selenium, ascorbic acid, and serum - selected as independent variables, given their influence on culture media performance. Radial basis function (RBF) neural networks and genetic algorithm (GA) were applied for prediction of dependent variables, and optimization of the culture media formulation, respectively. The results indicated that the developed RBF could accurately predict the GWP, cost and growth rate, with a model efficiency of 0.98. Subsequently, the three developed RBF neural networks predictive models were used as the inputs for a multi-objective genetic algorithm, and the optimal quantities of the independent variables were determined using a multi-objective optimization algorithm. The suggested RSM + RBF + GA framework in this study could be applied to sustainably optimize serum-free media development, identifying the combination of media ingredients that balances yield, environmental impact, and cost for various cultivated meat cell lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫猫球完成签到 ,获得积分10
26秒前
32秒前
1234567xjy发布了新的文献求助10
38秒前
38秒前
孤独君浩发布了新的文献求助10
45秒前
46秒前
mashibeo完成签到,获得积分10
49秒前
shyqiang发布了新的文献求助30
52秒前
58秒前
孤独君浩完成签到 ,获得积分10
1分钟前
1分钟前
shyqiang完成签到,获得积分10
1分钟前
Fletcherschwann完成签到,获得积分10
1分钟前
搜集达人应助hgm采纳,获得10
1分钟前
1分钟前
bible完成签到,获得积分10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
hgm发布了新的文献求助10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
欢呼阁完成签到,获得积分10
2分钟前
文武完成签到 ,获得积分10
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
honey完成签到 ,获得积分10
3分钟前
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
lalalatiancai发布了新的文献求助30
4分钟前
乐乱完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Ava应助可靠的寒风采纳,获得10
4分钟前
Sandy完成签到,获得积分10
4分钟前
4分钟前
4分钟前
李健应助fly采纳,获得10
4分钟前
852应助哭泣科研民工采纳,获得10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758181
求助须知:如何正确求助?哪些是违规求助? 3301061
关于积分的说明 10116325
捐赠科研通 3015529
什么是DOI,文献DOI怎么找? 1656205
邀请新用户注册赠送积分活动 790234
科研通“疑难数据库(出版商)”最低求助积分说明 753754