Traffic Police 3D Gesture Recognition Based on Spatial–Temporal Fully Adaptive Graph Convolutional Network

手势 计算机科学 图形 规范化(社会学) 手势识别 人工智能 语音识别 计算机视觉 实时计算 理论计算机科学 人类学 社会学
作者
Zheng Fu,Junjie Chen,Kun Jiang,Sijia Wang,Junze Wen,Mengmeng Yang,Diange Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9518-9531
标识
DOI:10.1109/tits.2023.3276345
摘要

It is critical for autonomous vehicles to recognize traffic police gestures timely and accurately. During the movement of the vehicle, the collected traffic police scales change all the time, in addition, the frequency and amplitude of actions of different traffic police are different. First, we use gesture normalization to fix the traffic police actions at a unified scale and remove the influence of scale changes on traffic police gesture recognition. Meanwhile, a fully adaptive spatial-temporal graph convolution network (FA-STGCN) is proposed to recognize the actions with different amplitude and frequencies. The adaptive spatial graph network can dig the latent joints connection relation of the traffic police under different gestures, which weakens the amplitude impact on the action recognition. The adaptive temporal graph network is composed of the global temporal module and the local temporal module. The global temporal module can obtain the coarse-grained features of the traffic police gestures’ speed and then naturally use the coarse-grained features to guide the local temporal module to adaptively learn the fine-grained temporal features of the traffic police action. The adaptive spatial graph network and the temporal graph network are alternately stacked to finally output accurate traffic police gestures. We thoroughly evaluated our method through intensive experiments, the result shows that our method achieved the best results on public datasets. What’s more, we proofed the effectiveness of each module and verified our methods for moving vehicles for the first time, the performance present meets the vehicle’s practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Silence采纳,获得10
刚刚
深爱不疑发布了新的文献求助200
刚刚
可爱的函函应助九川采纳,获得10
刚刚
科研通AI5应助端庄的黑米采纳,获得30
1秒前
md03393完成签到,获得积分10
1秒前
苏照杭应助snowdrift采纳,获得10
1秒前
esbd完成签到,获得积分10
2秒前
愉快之槐完成签到,获得积分10
2秒前
顺利涵菡发布了新的文献求助10
2秒前
Jenny应助拼搏思卉采纳,获得10
3秒前
3秒前
静时发布了新的文献求助10
3秒前
3秒前
JJlv完成签到,获得积分10
4秒前
4秒前
RMY完成签到 ,获得积分10
4秒前
5秒前
艺成成完成签到 ,获得积分10
5秒前
斯文败类应助大菠萝采纳,获得10
6秒前
一汁蟹完成签到,获得积分10
6秒前
jucy完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助zyh采纳,获得10
7秒前
榆木小鸟完成签到 ,获得积分10
7秒前
科研通AI5应助徐徐采纳,获得10
7秒前
8秒前
8秒前
zee完成签到 ,获得积分20
8秒前
单薄明雪完成签到,获得积分10
8秒前
9秒前
万能图书馆应助Godspeed采纳,获得10
9秒前
孟陬十一发布了新的文献求助10
9秒前
vivi猫小咪完成签到,获得积分10
9秒前
9秒前
bkagyin应助amumu采纳,获得10
10秒前
南方姑娘发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
丘比特应助Wu采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762