已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic Police 3D Gesture Recognition Based on Spatial–Temporal Fully Adaptive Graph Convolutional Network

手势 计算机科学 图形 规范化(社会学) 手势识别 人工智能 语音识别 计算机视觉 实时计算 理论计算机科学 人类学 社会学
作者
Zheng Fu,Junjie Chen,Kun Jiang,Sijia Wang,Junze Wen,Mengmeng Yang,Diange Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9518-9531
标识
DOI:10.1109/tits.2023.3276345
摘要

It is critical for autonomous vehicles to recognize traffic police gestures timely and accurately. During the movement of the vehicle, the collected traffic police scales change all the time, in addition, the frequency and amplitude of actions of different traffic police are different. First, we use gesture normalization to fix the traffic police actions at a unified scale and remove the influence of scale changes on traffic police gesture recognition. Meanwhile, a fully adaptive spatial-temporal graph convolution network (FA-STGCN) is proposed to recognize the actions with different amplitude and frequencies. The adaptive spatial graph network can dig the latent joints connection relation of the traffic police under different gestures, which weakens the amplitude impact on the action recognition. The adaptive temporal graph network is composed of the global temporal module and the local temporal module. The global temporal module can obtain the coarse-grained features of the traffic police gestures’ speed and then naturally use the coarse-grained features to guide the local temporal module to adaptively learn the fine-grained temporal features of the traffic police action. The adaptive spatial graph network and the temporal graph network are alternately stacked to finally output accurate traffic police gestures. We thoroughly evaluated our method through intensive experiments, the result shows that our method achieved the best results on public datasets. What’s more, we proofed the effectiveness of each module and verified our methods for moving vehicles for the first time, the performance present meets the vehicle’s practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
7秒前
李健应助Singularity采纳,获得10
8秒前
8秒前
小叶发布了新的文献求助10
9秒前
xiayu发布了新的文献求助10
9秒前
111234发布了新的文献求助10
11秒前
wanci应助我不转弯采纳,获得10
11秒前
12秒前
陈小小发布了新的文献求助10
13秒前
15秒前
15秒前
洁净艳一发布了新的文献求助10
16秒前
17秒前
Ldq发布了新的文献求助10
18秒前
涛哥完成签到,获得积分10
18秒前
大块发布了新的文献求助10
19秒前
20秒前
21秒前
23秒前
鲤鱼盼望发布了新的文献求助30
24秒前
天天快乐应助ta采纳,获得10
25秒前
由由应助ta采纳,获得10
25秒前
可爱的柜子应助蓝胖子采纳,获得10
25秒前
aaa发布了新的文献求助10
26秒前
29秒前
30秒前
情怀应助111234采纳,获得30
30秒前
静待花开发布了新的文献求助20
32秒前
QYQ7发布了新的文献求助10
33秒前
小红帽完成签到,获得积分10
34秒前
37秒前
陈小小完成签到,获得积分10
38秒前
科研通AI2S应助slby采纳,获得10
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234297
求助须知:如何正确求助?哪些是违规求助? 2880629
关于积分的说明 8216470
捐赠科研通 2548256
什么是DOI,文献DOI怎么找? 1377635
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302