Improving the prediction of protein stability changes upon mutations by geometric learning and a pre-training strategy

概化理论 人工智能 理论(学习稳定性) 水准点(测量) 计算机科学 机器学习 训练集 适应度函数 深度学习 相关性 试验数据 数学 遗传算法 统计 大地测量学 几何学 程序设计语言 地理
作者
Yunxin Xu,Ди Лю,Haipeng Gong
标识
DOI:10.1101/2023.05.28.542668
摘要

A bstract Accurate prediction of the fitness and stability of a protein upon mutations is of high importance in protein engineering and design. Despite the rapid development of deep learning techniques and accumulation of experimental data, the multi-labeled nature of fitness data hinders the training of robust deep-learning-based models for the fitness and stability prediction tasks. Here, we propose three geometric-learning-based models, GeoFitness, GeoDDG and GeoDTm, for the prediction of the fitness score, ΔΔ G and Δ T m of a protein upon mutations, respectively. In the optimization of GeoFitness, we designed a novel loss function to allow supervised training of a unified model using the large amount of multi-labeled fitness data in the deep mutational scanning (DMS) database. By this means, GeoFitness efficiently learns the general functional effects of protein mutations and achieves better performance over the other state-of-the-art methods. To further improve the downstream tasks of ΔΔ G /Δ T m prediction, we re-utilized the encoder of GeoFitness as a pre-trained module in GeoDDG and GeoDTm to overcome the challenge of lack of sufficient amount of specifically labeled data. This pre-training strategy in combination with data expansion remarkably improves model performance and generalizability. When evaluated on the benchmark test sets (S669 for ΔΔ G prediction and a newly collected set S571 for Δ T m prediction), GeoDDG and GeoDTm outperform the other state-of-the-art methods by at least 30% and 70%, respectively, in terms of the Spearman correlation coefficient between predicted and experimental values. An online server for the suite of these three predictors, GeoStab-suite, is available at http://structpred.life.tsinghua.edu.cn/server_geostab.html .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stella应助jasonhuang采纳,获得30
刚刚
在水一方应助开放的书芹采纳,获得10
刚刚
刚刚
三饱两倒完成签到,获得积分10
刚刚
NJD发布了新的文献求助10
刚刚
Sy关闭了Sy文献求助
1秒前
1秒前
1秒前
jiayue发布了新的文献求助10
1秒前
迭代发布了新的文献求助10
2秒前
2秒前
2秒前
xiaofeifantasy应助沈欣然采纳,获得10
2秒前
kobayashi发布了新的文献求助10
2秒前
starts完成签到,获得积分10
2秒前
2秒前
xfya完成签到,获得积分10
2秒前
2秒前
2秒前
Stella应助暗芒采纳,获得30
3秒前
吕小布完成签到,获得积分10
3秒前
AzureWindX完成签到,获得积分10
4秒前
4秒前
4秒前
小猪猪发布了新的文献求助10
4秒前
4秒前
曹兰萍发布了新的文献求助30
5秒前
5秒前
6秒前
朴实海亦完成签到,获得积分10
6秒前
明亮飞机完成签到,获得积分10
7秒前
7秒前
科研小白发布了新的文献求助10
7秒前
7秒前
鲜艳的向南完成签到 ,获得积分10
7秒前
7秒前
cdragon完成签到,获得积分10
7秒前
ssh完成签到,获得积分10
7秒前
Alice发布了新的文献求助10
8秒前
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313