Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Y.-J. Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier]
卷期号:171: 113059-113059 被引量:13
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的翠彤完成签到,获得积分10
1秒前
麻薯头头发布了新的文献求助10
4秒前
李青荣发布了新的文献求助10
5秒前
香蕉觅云应助tangyuan采纳,获得10
7秒前
小二郎应助开朗的翠彤采纳,获得10
7秒前
9秒前
10秒前
11秒前
慕青应助李青荣采纳,获得10
14秒前
qqesk发布了新的文献求助10
15秒前
阿盛完成签到,获得积分10
15秒前
18秒前
zouzhao关注了科研通微信公众号
20秒前
xgx984完成签到,获得积分10
22秒前
研友_VZG7GZ应助cccyc采纳,获得10
24秒前
张萌完成签到 ,获得积分10
28秒前
积极的尔白完成签到 ,获得积分10
30秒前
科研通AI2S应助加菲丰丰采纳,获得10
30秒前
31秒前
32秒前
沉静的万天完成签到 ,获得积分10
32秒前
珍珠奶茶发布了新的文献求助10
34秒前
alex发布了新的文献求助30
35秒前
37秒前
tangyuan发布了新的文献求助10
37秒前
38秒前
生动的海露完成签到,获得积分10
39秒前
许容完成签到,获得积分10
41秒前
蓝胖子举报Minixiao求助涉嫌违规
42秒前
都是发布了新的文献求助10
43秒前
spark317发布了新的文献求助10
43秒前
852应助你好啊采纳,获得10
46秒前
火星仙人掌完成签到 ,获得积分10
46秒前
zhaogl完成签到,获得积分10
48秒前
51秒前
dannnnn完成签到,获得积分10
51秒前
Akim应助zouzhao采纳,获得10
51秒前
whutzxy完成签到,获得积分10
52秒前
53秒前
luca完成签到,获得积分10
56秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043