亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier]
卷期号:171: 113059-113059 被引量:32
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bobo完成签到,获得积分10
7秒前
12秒前
科研通AI6应助sadascaqwqw采纳,获得10
12秒前
ChocolatChaud完成签到,获得积分10
17秒前
21秒前
Wy21完成签到 ,获得积分10
21秒前
25秒前
qqqq发布了新的文献求助10
25秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
28秒前
29秒前
默默善愁发布了新的文献求助10
29秒前
scofield给scofield的求助进行了留言
30秒前
Ava应助只只不妥采纳,获得10
32秒前
36秒前
程风破浪完成签到,获得积分10
40秒前
田様应助科研通管家采纳,获得10
40秒前
BowieHuang应助科研通管家采纳,获得10
40秒前
研友_VZG7GZ应助科研通管家采纳,获得10
40秒前
BowieHuang应助科研通管家采纳,获得10
40秒前
彭于晏应助科研通管家采纳,获得10
40秒前
40秒前
菜根谭发布了新的文献求助10
43秒前
49秒前
53秒前
TIGun完成签到,获得积分10
57秒前
酷波er应助果汁橡皮糖采纳,获得10
58秒前
只只不妥发布了新的文献求助10
58秒前
FashionBoy应助果汁橡皮糖采纳,获得10
58秒前
FashionBoy应助果汁橡皮糖采纳,获得10
58秒前
慕青应助果汁橡皮糖采纳,获得30
58秒前
李爱国应助果汁橡皮糖采纳,获得10
58秒前
香蕉觅云应助果汁橡皮糖采纳,获得10
58秒前
汉堡包应助果汁橡皮糖采纳,获得10
58秒前
乐乐应助果汁橡皮糖采纳,获得10
58秒前
脑洞疼应助果汁橡皮糖采纳,获得30
58秒前
59秒前
probiotics发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590362
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795121
捐赠科研通 4631465
什么是DOI,文献DOI怎么找? 2532696
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617