清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier]
卷期号:171: 113059-113059 被引量:32
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美味SCI歌单完成签到,获得积分10
刚刚
美味SCI歌单发布了新的文献求助100
3秒前
池雨完成签到 ,获得积分10
5秒前
24秒前
gexzygg应助科研通管家采纳,获得10
50秒前
1分钟前
2分钟前
干净怀寒发布了新的文献求助10
2分钟前
干净怀寒完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
sunialnd完成签到,获得积分10
2分钟前
2分钟前
3分钟前
krajicek发布了新的文献求助10
3分钟前
方白秋完成签到,获得积分0
3分钟前
魔幻的妖丽完成签到 ,获得积分0
4分钟前
热情的橙汁完成签到,获得积分10
4分钟前
qiongqiong完成签到 ,获得积分10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
kmzzy完成签到,获得积分10
5分钟前
daguan完成签到,获得积分10
5分钟前
荣幸完成签到 ,获得积分10
6分钟前
自由橘子完成签到 ,获得积分10
6分钟前
大医仁心完成签到 ,获得积分10
6分钟前
科研通AI6应助Kate采纳,获得10
7分钟前
8分钟前
Kate发布了新的文献求助10
8分钟前
wangfaqing942完成签到 ,获得积分10
9分钟前
大模型应助阿泽采纳,获得10
9分钟前
酷酷的紫南完成签到 ,获得积分10
10分钟前
博姐37完成签到 ,获得积分10
11分钟前
qqqq发布了新的文献求助10
11分钟前
大脸猫4811完成签到,获得积分10
11分钟前
老石完成签到 ,获得积分10
12分钟前
英姑应助科研通管家采纳,获得10
12分钟前
随心所欲完成签到 ,获得积分10
13分钟前
北七完成签到,获得积分10
15分钟前
new1完成签到,获得积分10
15分钟前
qq完成签到 ,获得积分10
17分钟前
17分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565086
求助须知:如何正确求助?哪些是违规求助? 4649875
关于积分的说明 14689323
捐赠科研通 4591749
什么是DOI,文献DOI怎么找? 2519367
邀请新用户注册赠送积分活动 1491917
关于科研通互助平台的介绍 1463081