Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113059-113059 被引量:25
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鹂鹂复霖霖完成签到,获得积分10
刚刚
香蕉觅云应助牵墨采纳,获得10
1秒前
科研通AI2S应助liyk采纳,获得10
1秒前
安安发布了新的文献求助10
2秒前
充电宝应助Yao采纳,获得10
2秒前
呀呀呀呀完成签到,获得积分10
2秒前
重要英姑完成签到,获得积分10
2秒前
鲸鱼完成签到 ,获得积分10
3秒前
3秒前
在水一方应助负蕲采纳,获得10
3秒前
科研通AI5应助旦皋采纳,获得10
3秒前
Tina完成签到 ,获得积分10
3秒前
幽默酸奶完成签到,获得积分20
4秒前
鞭霆发布了新的文献求助10
4秒前
赘婿应助桃桃采纳,获得10
4秒前
如梦如画完成签到,获得积分10
4秒前
Xinzz完成签到 ,获得积分10
4秒前
重要英姑发布了新的文献求助10
5秒前
Lvweieg完成签到,获得积分10
5秒前
事事顺利发布了新的文献求助10
6秒前
6秒前
knight发布了新的文献求助10
6秒前
caozhi完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助碧蓝雨安采纳,获得10
7秒前
7秒前
li完成签到 ,获得积分10
7秒前
结实半邪完成签到,获得积分10
8秒前
8秒前
柠檬九分酸完成签到,获得积分10
9秒前
9秒前
Silieze完成签到,获得积分10
9秒前
哆啦A涵发布了新的文献求助10
10秒前
222发布了新的文献求助10
10秒前
11秒前
科研通AI6应助jyyg采纳,获得30
11秒前
桥桥发布了新的文献求助10
11秒前
小二郎应助zjl采纳,获得10
11秒前
浮游应助skyer1采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426