清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier]
卷期号:171: 113059-113059 被引量:32
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
莨菪发布了新的文献求助10
13秒前
tt完成签到,获得积分10
22秒前
斯文的清涟完成签到,获得积分10
37秒前
43秒前
盈盈发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
1分钟前
1分钟前
1分钟前
老马哥完成签到 ,获得积分0
1分钟前
大医仁心完成签到 ,获得积分10
2分钟前
CipherSage应助Penny采纳,获得10
2分钟前
2分钟前
Penny完成签到,获得积分10
2分钟前
Penny发布了新的文献求助10
2分钟前
盈盈发布了新的文献求助10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
meeteryu完成签到,获得积分10
2分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
Alisha完成签到,获得积分10
3分钟前
3分钟前
3分钟前
jjy发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160