Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113059-113059 被引量:18
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澄碧千顷完成签到 ,获得积分10
2秒前
3秒前
3秒前
馒头完成签到,获得积分10
4秒前
qhdsyxy完成签到 ,获得积分0
4秒前
时2完成签到,获得积分10
5秒前
飞快的雅青完成签到 ,获得积分20
5秒前
cuddly完成签到 ,获得积分10
6秒前
7秒前
wxs完成签到,获得积分10
8秒前
洁净的闭月完成签到,获得积分10
8秒前
和尘同光发布了新的文献求助10
9秒前
云木完成签到 ,获得积分10
11秒前
浅斟低唱发布了新的文献求助10
12秒前
科研通AI5应助和谐的蜡烛采纳,获得10
16秒前
研友_GZ3zRn完成签到 ,获得积分0
18秒前
Foura完成签到,获得积分10
19秒前
鑫光熠熠完成签到 ,获得积分10
19秒前
zhoujy完成签到,获得积分10
19秒前
今后应助浅斟低唱采纳,获得10
21秒前
Neo.H完成签到,获得积分10
23秒前
xk要发nature子刊完成签到,获得积分10
24秒前
爱学习的我完成签到 ,获得积分10
25秒前
28秒前
隔壁巷子里的劉完成签到 ,获得积分10
28秒前
28秒前
31秒前
32秒前
宇文千万发布了新的文献求助10
33秒前
34秒前
沉静傲易完成签到,获得积分10
36秒前
geold发布了新的文献求助10
37秒前
浅斟低唱发布了新的文献求助10
38秒前
xiaxiao应助今天也爱看文献采纳,获得200
39秒前
anhuiwsy完成签到 ,获得积分10
40秒前
40秒前
王王碎冰冰完成签到,获得积分10
42秒前
虚心的寒梦完成签到,获得积分10
43秒前
独特的忆彤完成签到 ,获得积分10
43秒前
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3678075
求助须知:如何正确求助?哪些是违规求助? 3231604
关于积分的说明 9798557
捐赠科研通 2942758
什么是DOI,文献DOI怎么找? 1613527
邀请新用户注册赠送积分活动 761619
科研通“疑难数据库(出版商)”最低求助积分说明 737025