亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier]
卷期号:171: 113059-113059 被引量:25
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栀盎完成签到 ,获得积分10
27秒前
yujie完成签到 ,获得积分10
39秒前
45秒前
1分钟前
CodeCraft应助王红玉采纳,获得10
1分钟前
1分钟前
1分钟前
王红玉发布了新的文献求助10
1分钟前
2分钟前
和谐的芷文完成签到 ,获得积分10
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
mochalv123完成签到 ,获得积分10
4分钟前
ZDTT完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
whichwu发布了新的文献求助10
6分钟前
6分钟前
6分钟前
Gigi发布了新的文献求助10
6分钟前
whichwu完成签到,获得积分10
6分钟前
6分钟前
GingerF应助dh采纳,获得60
6分钟前
7分钟前
jarrykim发布了新的文献求助10
7分钟前
WebCasa完成签到,获得积分10
7分钟前
7分钟前
Picopy发布了新的文献求助10
8分钟前
8分钟前
jarrykim完成签到,获得积分10
8分钟前
poohpooh发布了新的文献求助10
8分钟前
8分钟前
poohpooh完成签到,获得积分10
8分钟前
9分钟前
Picopy完成签到,获得积分10
9分钟前
xiaowangwang完成签到 ,获得积分10
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413296
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122913
捐赠科研通 4445466
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756