Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113059-113059 被引量:19
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛X发布了新的文献求助10
1秒前
南瓜汤完成签到,获得积分10
1秒前
1秒前
奋斗瑶完成签到,获得积分10
2秒前
对方正在输入关注了科研通微信公众号
2秒前
qaz发布了新的文献求助10
2秒前
2秒前
CSPC001发布了新的文献求助10
3秒前
3秒前
每天都是好时光完成签到 ,获得积分10
4秒前
王淳发布了新的文献求助10
4秒前
4秒前
重要的念文完成签到,获得积分10
5秒前
一骑绝尘发布了新的文献求助10
5秒前
IvanLing发布了新的文献求助10
5秒前
cc发布了新的文献求助10
6秒前
机智谷蕊发布了新的文献求助10
6秒前
李健的小迷弟应助sch采纳,获得10
7秒前
福路路发布了新的文献求助30
7秒前
乖猫要努力应助元谷雪采纳,获得10
8秒前
8秒前
852应助泡菜汤味豆腐采纳,获得10
8秒前
哈哈哈哈完成签到,获得积分10
9秒前
mmc发布了新的文献求助10
9秒前
huangdq6完成签到 ,获得积分10
10秒前
风趣夜云完成签到,获得积分10
11秒前
11秒前
江峰发布了新的文献求助10
11秒前
复杂汲完成签到,获得积分10
11秒前
taybour完成签到,获得积分10
11秒前
12秒前
12秒前
张澳完成签到,获得积分10
12秒前
希望天下0贩的0应助哈喽采纳,获得10
13秒前
机智谷蕊完成签到,获得积分10
13秒前
科目三应助金元宝采纳,获得10
13秒前
Catherine_Song完成签到 ,获得积分10
13秒前
海螺姑娘完成签到,获得积分10
13秒前
SCI发发发完成签到,获得积分20
13秒前
共享精神应助刘亦菲采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209