PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural Network

自动微分 人工神经网络 外推法 偏微分方程 计算机科学 搭配(遥感) 理论计算机科学 计算 反向传播 图形 领域(数学分析) 算法 人工智能 数学优化 数学 机器学习 数学分析
作者
Longxiang Jiang,Liyuan Wang,Xinkun Chu,Yonghao Xiao,Hao Zhang
标识
DOI:10.1145/3590003.3590029
摘要

Partial differential equations (PDEs) are a common means of describing physical processes. Solving PDEs can obtain simulated results of physical evolution. Currently, the mainstream neural network method is to minimize the loss of PDEs thus constraining neural networks to fit the solution mappings. By the implementation of differentiation, the methods can be divided into PINN methods based on automatic differentiation and other methods based on discrete differentiation. PINN methods rely on automatic backpropagation, and the computation step is time-consuming, for iterative training, the complexity of the neural network and the number of collocation points are limited to a small condition, thus abating accuracy. The discrete differentiation is more efficient in computation, following the regular computational domain assumption. However, in practice, the assumption does not necessarily hold. In this paper, we propose a PhyGNNet method to solve PDEs based on graph neural network and discrete differentiation on irregular domain. Meanwhile, to verify the validity of the method, we solve Burgers equation and conduct a numerical comparison with PINN. The results show that the proposed method performs better both in fit ability and time extrapolation than PINN. Code is available at https://github.com/echowve/phygnnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
霸气的香芦完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助呆萌哈密瓜采纳,获得10
2秒前
3秒前
呆萌星星发布了新的文献求助10
4秒前
4秒前
ZHQ发布了新的文献求助10
5秒前
北方完成签到,获得积分10
5秒前
6秒前
6秒前
白菜包子发布了新的文献求助10
6秒前
内向怀曼发布了新的文献求助10
7秒前
RaynorHank发布了新的文献求助10
7秒前
7秒前
8秒前
10秒前
harden9159发布了新的文献求助10
11秒前
11秒前
鄂海菡完成签到,获得积分10
11秒前
11秒前
美丽宝贝完成签到,获得积分10
11秒前
华仔应助Roc采纳,获得10
11秒前
12秒前
12秒前
朱豪豪完成签到,获得积分10
12秒前
我是老大应助gwenjing采纳,获得10
12秒前
yu发布了新的文献求助10
13秒前
芭娜55完成签到 ,获得积分10
13秒前
SYLH应助将将采纳,获得20
14秒前
15秒前
科研小白完成签到,获得积分20
15秒前
15秒前
正直凌文发布了新的文献求助10
16秒前
16秒前
XIXIw发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
A Comprehensive Review on the Chemical Composition, Pharmacology and Clinical Applications of Ganoderma 3000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019