Development and Validation of a Deep Learning–Based Histologic Diagnosis System for Diagnosing Colorectal Sessile Serrated Lesions

医学 卷积神经网络 人工智能 分割 鉴别诊断 病理 诊断准确性 放射科 计算机科学
作者
Zhifeng Wu,Liwen Yao,Wen Liu,Shiying Zhang,Lihui Zhang,Zihua Lu,Jing Wang,Bo‐Ru Chen,Renquan Luo,Xun Li,Rongrong Gong,Chaijie Luo,Y Xu,Zhi Zeng,Honggang Yu
出处
期刊:American Journal of Clinical Pathology [Oxford University Press]
卷期号:160 (4): 394-403 被引量:2
标识
DOI:10.1093/ajcp/aqad058
摘要

The histopathologic diagnosis of colorectal sessile serrated lesions (SSLs) and hyperplastic polyps (HPs) is of low consistency among pathologists. This study aimed to develop and validate a deep learning (DL)-based logical anthropomorphic pathology diagnostic system (LA-SSLD) for the differential diagnosis of colorectal SSL and HP.The diagnosis framework of the LA-SSLD system was constructed according to the current guidelines and consisted of 4 DL models. Deep convolutional neural network (DCNN) 1 was the mucosal layer segmentation model, DCNN 2 was the muscularis mucosa segmentation model, DCNN 3 was the glandular lumen segmentation model, and DCNN 4 was the glandular lumen classification (aberrant or regular) model. A total of 175 HP and 127 SSL sections were collected from Renmin Hospital of Wuhan University during November 2016 to November 2022. The performance of the LA-SSLD system was compared to 11 pathologists with different qualifications through the human-machine contest.The Dice scores of DCNNs 1, 2, and 3 were 93.66%, 58.38%, and 74.04%, respectively. The accuracy of DCNN 4 was 92.72%. In the human-machine contest, the accuracy, sensitivity, and specificity of the LA-SSLD system were 85.71%, 86.36%, and 85.00%, respectively. In comparison with experts (pathologist D: accuracy 83.33%, sensitivity 90.91%, specificity 75.00%; pathologist E: accuracy 85.71%, sensitivity 90.91%, specificity 80.00%), LA-SSLD achieved expert-level accuracy and outperformed all the senior and junior pathologists.This study proposed a logical anthropomorphic diagnostic system for the differential diagnosis of colorectal SSL and HP. The diagnostic performance of the system is comparable to that of experts and has the potential to become a powerful diagnostic tool for SSL in the future. It is worth mentioning that a logical anthropomorphic system can achieve expert-level accuracy with fewer samples, providing potential ideas for the development of other artificial intelligence models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛弟完成签到 ,获得积分10
2秒前
jason完成签到 ,获得积分10
2秒前
钱念波完成签到 ,获得积分10
3秒前
淼淼之锋完成签到 ,获得积分10
5秒前
眼睛大的傲菡完成签到,获得积分10
10秒前
懒癌晚期完成签到,获得积分10
17秒前
kais完成签到 ,获得积分10
23秒前
龚问萍完成签到 ,获得积分10
33秒前
困困困完成签到 ,获得积分10
35秒前
38秒前
任性翠安完成签到 ,获得积分10
41秒前
奋斗的妙海完成签到 ,获得积分0
47秒前
zhang完成签到 ,获得积分10
48秒前
慧19960418发布了新的文献求助10
58秒前
隐形曼青应助慧19960418采纳,获得10
1分钟前
李大壮完成签到 ,获得积分10
1分钟前
蟹xie完成签到 ,获得积分10
1分钟前
祈祈完成签到 ,获得积分10
1分钟前
欢呼的世立完成签到 ,获得积分10
1分钟前
maclogos完成签到,获得积分10
1分钟前
徐徐徐完成签到 ,获得积分10
1分钟前
moon完成签到 ,获得积分10
1分钟前
雨声完成签到,获得积分10
1分钟前
loudly完成签到,获得积分10
1分钟前
会发芽完成签到 ,获得积分10
1分钟前
活力的泥猴桃完成签到 ,获得积分10
1分钟前
Richard完成签到 ,获得积分10
1分钟前
David完成签到 ,获得积分0
1分钟前
jie完成签到 ,获得积分10
1分钟前
1分钟前
唯梦完成签到 ,获得积分10
1分钟前
山楂发布了新的文献求助20
1分钟前
蔡从安发布了新的文献求助10
1分钟前
芝芝发布了新的文献求助10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
思源应助蔡从安采纳,获得10
1分钟前
小马甲应助蔡从安采纳,获得10
1分钟前
orixero应助山楂采纳,获得10
1分钟前
自然的衫完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565