Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning

突变 液体活检 表皮生长因子受体 生物标志物 T790米 外体 计算生物学 生物 分子生物学 化学 基因 微泡 受体 癌症 生物化学 遗传学 小RNA 克拉斯
作者
Seungmin Kim,Byeong Hyeon Choi,Hyunku Shin,Kihun Kwon,Sung Yong Lee,Hyun Bin Yoon,Hyun Koo Kim,Yeonho Choi
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (6): 2391-2400 被引量:25
标识
DOI:10.1021/acssensors.3c00681
摘要

Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hywel发布了新的文献求助10
1秒前
神楽完成签到,获得积分10
6秒前
7秒前
沉默清关注了科研通微信公众号
9秒前
香豆素完成签到 ,获得积分10
11秒前
哇哦哦完成签到 ,获得积分10
11秒前
waws发布了新的文献求助10
12秒前
漫若浮光完成签到,获得积分10
13秒前
KK完成签到,获得积分10
13秒前
隐形的冰兰给隐形的冰兰的求助进行了留言
14秒前
浮游应助飘逸灵煌采纳,获得10
15秒前
18秒前
stt完成签到 ,获得积分10
19秒前
大个应助山君采纳,获得10
20秒前
科研通AI6应助Jason采纳,获得10
21秒前
27完成签到 ,获得积分10
23秒前
24秒前
陈嘉绍发布了新的文献求助10
25秒前
朴实归尘完成签到,获得积分10
27秒前
跑掉关注了科研通微信公众号
28秒前
JTCatherine完成签到,获得积分10
28秒前
典雅的夜梦完成签到 ,获得积分10
28秒前
沉默清发布了新的文献求助10
30秒前
pangsichao完成签到,获得积分10
30秒前
紧张的惜梦完成签到,获得积分10
33秒前
赘婿应助Ra1n采纳,获得10
34秒前
小青椒应助ryt采纳,获得30
34秒前
饭神仙鱼完成签到,获得积分10
34秒前
35秒前
35秒前
luo发布了新的文献求助10
41秒前
43秒前
王昊发布了新的文献求助10
45秒前
李爱国应助ll采纳,获得10
46秒前
48秒前
50秒前
傲娇蜜蜂完成签到,获得积分10
51秒前
超级盼烟完成签到,获得积分10
51秒前
kangkang发布了新的文献求助30
53秒前
54秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225665
求助须知:如何正确求助?哪些是违规求助? 4397339
关于积分的说明 13686262
捐赠科研通 4261822
什么是DOI,文献DOI怎么找? 2338760
邀请新用户注册赠送积分活动 1336137
关于科研通互助平台的介绍 1292067