Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning

突变 液体活检 表皮生长因子受体 生物标志物 T790米 外体 计算生物学 生物 分子生物学 化学 基因 微泡 受体 癌症 生物化学 遗传学 小RNA 克拉斯
作者
Seungmin Kim,Byeong Hyeon Choi,Hyunku Shin,Kihun Kwon,Sung Yong Lee,Hyun Bin Yoon,Hyun Koo Kim,Yeonho Choi
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (6): 2391-2400 被引量:17
标识
DOI:10.1021/acssensors.3c00681
摘要

Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhnee完成签到,获得积分20
3秒前
思源应助破睡应是不夜侯采纳,获得10
4秒前
Oh发布了新的文献求助10
7秒前
善学以致用应助邢文瑞采纳,获得10
9秒前
fiona完成签到,获得积分10
10秒前
Rondab应助liqian采纳,获得10
12秒前
15秒前
OYZKPQY完成签到,获得积分20
15秒前
无奈的鹤完成签到,获得积分10
16秒前
orixero应助77采纳,获得10
20秒前
20秒前
¥#¥-11完成签到,获得积分10
21秒前
21秒前
ZWE完成签到,获得积分10
23秒前
邢文瑞发布了新的文献求助10
23秒前
ss关闭了ss文献求助
26秒前
坦率发布了新的文献求助10
27秒前
31秒前
32秒前
sgs完成签到,获得积分10
32秒前
哒哒发布了新的文献求助10
34秒前
zho发布了新的文献求助10
36秒前
beizi发布了新的文献求助30
37秒前
麦麦完成签到,获得积分10
39秒前
爆米花应助哒哒采纳,获得10
42秒前
小七发布了新的文献求助10
45秒前
铁甲小杨完成签到,获得积分0
46秒前
orixero应助迷路的依波采纳,获得10
47秒前
47秒前
大力初珍发布了新的文献求助20
48秒前
Bella完成签到,获得积分10
50秒前
鹿茸与共发布了新的文献求助10
53秒前
53秒前
肉肉的小屋完成签到,获得积分10
53秒前
58秒前
小任吃不胖完成签到,获得积分10
1分钟前
一拳一个小欧阳完成签到 ,获得积分10
1分钟前
隐形曼青应助一年5篇采纳,获得20
1分钟前
万万想到了完成签到,获得积分10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999380
求助须知:如何正确求助?哪些是违规求助? 3538707
关于积分的说明 11275016
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101