Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning

突变 液体活检 表皮生长因子受体 生物标志物 T790米 外体 计算生物学 生物 分子生物学 化学 基因 微泡 受体 癌症 生物化学 遗传学 小RNA 克拉斯
作者
Seungmin Kim,Byeong Hyeon Choi,Hyunku Shin,Kihun Kwon,Sung Yong Lee,Hyun Bin Yoon,Hyun Koo Kim,Yeonho Choi
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (6): 2391-2400 被引量:25
标识
DOI:10.1021/acssensors.3c00681
摘要

Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运来完成签到 ,获得积分10
刚刚
刚刚
33完成签到 ,获得积分10
刚刚
Noimpty发布了新的文献求助10
1秒前
Jsssds发布了新的文献求助10
1秒前
2秒前
123完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
jxm发布了新的文献求助10
6秒前
6秒前
whoknowsname完成签到,获得积分10
6秒前
辛雨完成签到 ,获得积分10
7秒前
Orange应助littlechy采纳,获得10
8秒前
CodeCraft应助酷酷草莓采纳,获得10
8秒前
英俊的铭应助Lee采纳,获得10
9秒前
大个应助爱吃咸鱼的夜猫采纳,获得10
9秒前
Jsssds完成签到,获得积分10
9秒前
qingmoheng应助Dr终年采纳,获得10
12秒前
12秒前
12秒前
杜青完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
echo完成签到 ,获得积分10
15秒前
15秒前
zl发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
Lee发布了新的文献求助10
18秒前
18秒前
小米发布了新的文献求助10
18秒前
19秒前
19秒前
Feeling完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484143
求助须知:如何正确求助?哪些是违规求助? 4584418
关于积分的说明 14397830
捐赠科研通 4514421
什么是DOI,文献DOI怎么找? 2473992
邀请新用户注册赠送积分活动 1459944
关于科研通互助平台的介绍 1433349