亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 94-105 被引量:20
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
Orange应助科研通管家采纳,获得10
35秒前
Cherie77完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
45秒前
穆振家完成签到,获得积分10
56秒前
1分钟前
1分钟前
2分钟前
Axs完成签到,获得积分10
2分钟前
Kevin完成签到,获得积分10
2分钟前
3分钟前
羞涩的傲菡完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助50
3分钟前
3分钟前
3分钟前
闲逛的木头2完成签到,获得积分20
4分钟前
捉迷藏完成签到,获得积分0
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
迅速的岩完成签到,获得积分10
4分钟前
HYQ完成签到 ,获得积分10
5分钟前
5分钟前
嘻嘻完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
ding应助科研通管家采纳,获得10
6分钟前
徐凤年完成签到,获得积分10
6分钟前
沐雨微寒完成签到,获得积分10
6分钟前
7分钟前
7分钟前
欣慰外套完成签到 ,获得积分10
7分钟前
yindi1991完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
美满的小蘑菇完成签到 ,获得积分10
9分钟前
10分钟前
乐乐应助科研通管家采纳,获得10
10分钟前
10分钟前
瘦瘦的枫叶完成签到 ,获得积分10
11分钟前
11分钟前
量子星尘发布了新的文献求助10
11分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596068
求助须知:如何正确求助?哪些是违规求助? 4008190
关于积分的说明 12408923
捐赠科研通 3687090
什么是DOI,文献DOI怎么找? 2032193
邀请新用户注册赠送积分活动 1065428
科研通“疑难数据库(出版商)”最低求助积分说明 950759