3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 94-105 被引量:10
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
redondo10完成签到,获得积分0
2秒前
3秒前
乔qiao发布了新的文献求助30
6秒前
WZ0904发布了新的文献求助10
7秒前
poegtam完成签到,获得积分10
8秒前
大胆盼兰发布了新的文献求助10
9秒前
wuyan204完成签到 ,获得积分10
10秒前
windcreator完成签到,获得积分10
10秒前
redondo5完成签到,获得积分0
10秒前
wangrswjx完成签到 ,获得积分10
10秒前
科研通AI5应助su采纳,获得10
10秒前
13秒前
15秒前
小二郎应助嘻嘻采纳,获得10
15秒前
yun完成签到 ,获得积分10
16秒前
16秒前
18秒前
健忘曼冬发布了新的文献求助10
18秒前
redondo完成签到,获得积分10
18秒前
momo完成签到,获得积分10
19秒前
希望天下0贩的0应助meng采纳,获得10
20秒前
龙歪歪发布了新的文献求助10
21秒前
21秒前
暮城完成签到,获得积分10
21秒前
22秒前
云墨完成签到 ,获得积分10
22秒前
24秒前
25秒前
Akim应助caoyy采纳,获得10
25秒前
26秒前
科研通AI2S应助DreamMaker采纳,获得10
26秒前
29秒前
zho发布了新的文献求助30
29秒前
29秒前
ywang发布了新的文献求助10
29秒前
ZD小草完成签到 ,获得积分10
30秒前
健忘曼冬完成签到,获得积分10
31秒前
hkl1542发布了新的文献求助50
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849