3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 94-105 被引量:29
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助diony010采纳,获得10
刚刚
飘逸太英完成签到,获得积分20
1秒前
2秒前
wangchong发布了新的文献求助10
2秒前
爆米花应助仲谋采纳,获得10
2秒前
香蕉觅云应助彩色橘子采纳,获得10
3秒前
4秒前
5秒前
无限的思柔完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
bzlish发布了新的文献求助10
9秒前
sct发布了新的文献求助10
10秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
11秒前
冷傲的从雪完成签到 ,获得积分10
11秒前
11秒前
LL发布了新的文献求助10
12秒前
乐乐应助开心仙人掌采纳,获得20
12秒前
wangchong完成签到,获得积分10
12秒前
Pumpkin完成签到,获得积分10
12秒前
Rui_Rui完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
皮老八完成签到 ,获得积分10
14秒前
合适遥应助大力的惠采纳,获得30
14秒前
丘比特应助bzlish采纳,获得10
15秒前
15秒前
cc应助lu采纳,获得10
15秒前
wpk9904发布了新的文献求助10
16秒前
19秒前
精明人达发布了新的文献求助10
21秒前
22秒前
风趣的碧琴完成签到,获得积分10
22秒前
22秒前
22秒前
24秒前
完美世界应助Rui采纳,获得10
24秒前
CC发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642531
求助须知:如何正确求助?哪些是违规求助? 4759094
关于积分的说明 15017959
捐赠科研通 4801089
什么是DOI,文献DOI怎么找? 2566399
邀请新用户注册赠送积分活动 1524484
关于科研通互助平台的介绍 1484011