3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 94-105 被引量:29
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助w1x2123采纳,获得10
刚刚
刚刚
光亮白山发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
顺利毕业发布了新的文献求助10
1秒前
我是老大应助小小小采纳,获得10
1秒前
小王发布了新的文献求助100
1秒前
ABC2023发布了新的文献求助10
2秒前
wintew发布了新的文献求助10
2秒前
紫气东来发布了新的文献求助10
4秒前
zorow完成签到,获得积分10
4秒前
Vanessa完成签到 ,获得积分10
4秒前
lip给景不评的求助进行了留言
4秒前
5秒前
hmy完成签到,获得积分10
5秒前
5秒前
科研通AI6应助fish采纳,获得10
5秒前
SN完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
6秒前
7秒前
小二郎应助Cyril采纳,获得10
7秒前
wsx发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
科研通AI2S应助熊熊冲冲冲采纳,获得10
10秒前
舒适的巧凡完成签到,获得积分10
10秒前
噜噜噜发布了新的文献求助10
11秒前
科研通AI6应助wintew采纳,获得10
12秒前
落后紫夏完成签到,获得积分10
12秒前
12秒前
13秒前
zhaoyue完成签到 ,获得积分10
13秒前
14秒前
flyflyfly发布了新的文献求助10
14秒前
隐形曼青应助迎风映雪采纳,获得10
14秒前
15秒前
任寒松发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721