3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 94-105 被引量:29
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leizhengyu完成签到 ,获得积分10
1秒前
小鱼完成签到,获得积分10
1秒前
QIANGYI完成签到 ,获得积分10
1秒前
fishss完成签到 ,获得积分0
4秒前
自信南霜完成签到,获得积分10
6秒前
权青曼完成签到,获得积分10
8秒前
傻傻的尔蓝完成签到,获得积分10
15秒前
完美世界应助fatcat采纳,获得10
17秒前
阿南完成签到 ,获得积分10
18秒前
轩辕书白完成签到,获得积分10
18秒前
直率若烟完成签到 ,获得积分10
21秒前
Yasmine完成签到 ,获得积分10
25秒前
微笑立轩完成签到,获得积分10
26秒前
Superman完成签到 ,获得积分10
26秒前
尔尔完成签到 ,获得积分10
27秒前
甜甜秋荷完成签到,获得积分10
28秒前
科研王子完成签到,获得积分10
30秒前
齐欢完成签到,获得积分10
30秒前
讨厌下雨天完成签到 ,获得积分10
31秒前
Smar_zcl应助科研通管家采纳,获得200
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得10
32秒前
一三二五七完成签到 ,获得积分0
32秒前
34秒前
科目三应助哈哈哈采纳,获得10
35秒前
害羞便当完成签到 ,获得积分10
39秒前
41秒前
星城浮轩完成签到 ,获得积分10
41秒前
SH123完成签到 ,获得积分0
42秒前
哈哈哈发布了新的文献求助10
45秒前
yu完成签到 ,获得积分10
46秒前
高高完成签到 ,获得积分10
49秒前
15940203654完成签到 ,获得积分10
51秒前
Cai完成签到,获得积分10
52秒前
沉静的乘风完成签到,获得积分10
53秒前
53秒前
53秒前
ppapp完成签到,获得积分10
58秒前
一只橙子完成签到,获得积分10
1分钟前
tutu发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293975
求助须知:如何正确求助?哪些是违规求助? 4443988
关于积分的说明 13831887
捐赠科研通 4327968
什么是DOI,文献DOI怎么找? 2375834
邀请新用户注册赠送积分活动 1371109
关于科研通互助平台的介绍 1336150