3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 94-105 被引量:10
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花誓lydia完成签到 ,获得积分10
5秒前
流星雨完成签到 ,获得积分10
11秒前
marc107完成签到,获得积分10
11秒前
xuan完成签到,获得积分10
15秒前
喜悦向日葵完成签到 ,获得积分10
16秒前
酷酷小子完成签到 ,获得积分10
16秒前
Hello应助sunshine采纳,获得10
18秒前
我就想看看文献完成签到 ,获得积分10
22秒前
缓慢的灵枫完成签到 ,获得积分10
25秒前
Nick完成签到,获得积分0
25秒前
25秒前
彭于晏应助陶醉的笑槐采纳,获得10
31秒前
Yuan完成签到,获得积分10
33秒前
36秒前
sunshine完成签到,获得积分10
38秒前
mm完成签到 ,获得积分10
40秒前
老迟到的羊完成签到 ,获得积分10
41秒前
sunshine发布了新的文献求助10
42秒前
wangchong完成签到 ,获得积分10
44秒前
45秒前
Edward完成签到,获得积分10
49秒前
tzjz_zrz完成签到,获得积分10
49秒前
CodeCraft应助sunshine采纳,获得10
52秒前
zheng完成签到 ,获得积分10
52秒前
忘忧Aquarius完成签到,获得积分10
54秒前
Herbs完成签到 ,获得积分10
54秒前
牛奶面包完成签到 ,获得积分10
55秒前
文静三颜发布了新的文献求助10
56秒前
57秒前
领导范儿应助wmy采纳,获得10
1分钟前
TongKY完成签到 ,获得积分10
1分钟前
simon完成签到,获得积分10
1分钟前
神秘玩家完成签到 ,获得积分10
1分钟前
温文尔雅完成签到,获得积分10
1分钟前
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
Rondab应助文静三颜采纳,获得10
1分钟前
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251