3D graph neural network with few-shot learning for predicting drug–drug interactions in scaffold-based cold start scenario

计算机科学 药品 脚手架 人工智能 人工神经网络 图形 深度学习 机器学习 理论计算机科学 生物 药理学 数据库
作者
Qiujie Lv,Jun Zhou,Ziduo Yang,Haohuai He,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 94-105 被引量:29
标识
DOI:10.1016/j.neunet.2023.05.039
摘要

Understanding drug-drug interactions (DDI) of new drugs is critical for minimizing unexpected adverse drug reactions. The modeling of new drugs is called a cold start scenario. In this scenario, Only a few structural information or physicochemical information about new drug is available. The 3D conformation of drug molecules usually plays a crucial role in chemical properties compared to the 2D structure. 3D graph network with few-shot learning is a promising solution. However, the 3D heterogeneity of drug molecules and the discretization of atomic distributions lead to spatial confusion in few-shot learning. Here, we propose a 3D graph neural network with few-shot learning, Meta3D-DDI, to predict DDI events in cold start scenario. The 3DGNN ensures rotation and translation invariance by calculating atomic pairwise distances, and incorporates 3D structure and distance information in the information aggregation stage. The continuous filter interaction module can continuously simulate the filter to obtain the interaction between the target atom and other atoms. Meta3D-DDI further develops a FSL strategy based on bilevel optimization to transfer meta-knowledge for DDI prediction tasks from existing drugs to new drugs. In addition, the existing cold start setting may cause the scaffold structure information in the training set to leak into the test set. We design scaffold-based cold start scenario to ensure that the drug scaffolds in the training set and test set do not overlap. The extensive experiments demonstrate that our architecture achieves the SOTA performance for DDI prediction under scaffold-based cold start scenario on two real-world datasets. The visual experiment shows that Meta3D-DDI significantly improves the learning for DDI prediction of new drugs. We also demonstrate how Meta3D-DDI can reduce the amount of data required to make meaningful DDI predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
情怀应助怡然缘分采纳,获得10
1秒前
因几完成签到 ,获得积分10
2秒前
2秒前
LD完成签到 ,获得积分10
3秒前
liuying发布了新的文献求助10
3秒前
3秒前
英俊的铭应助搞怪人雄采纳,获得10
3秒前
萌酱发布了新的文献求助10
4秒前
爱科研完成签到,获得积分10
4秒前
Jasper应助橘子海采纳,获得10
4秒前
yuyumi发布了新的文献求助10
5秒前
5秒前
华仔应助磷钼酸奎琳采纳,获得10
6秒前
杨杨应助pooh采纳,获得10
6秒前
开朗的草莓应助冷酷成威采纳,获得10
7秒前
开朗的草莓应助冷酷成威采纳,获得10
7秒前
xixi完成签到,获得积分10
7秒前
逐梦发布了新的文献求助10
7秒前
gxy发布了新的文献求助10
8秒前
8秒前
8秒前
杏仁核发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
愚者先生发布了新的文献求助10
9秒前
NexusExplorer应助Jan采纳,获得10
9秒前
上官卿完成签到,获得积分20
10秒前
11秒前
萌酱完成签到,获得积分10
11秒前
怡然缘分发布了新的文献求助10
12秒前
Akim应助冯琳栋采纳,获得10
13秒前
拉拉发布了新的文献求助10
13秒前
15秒前
15秒前
深情安青应助美满的凝丝采纳,获得10
15秒前
哇塞的完成签到,获得积分10
15秒前
搞怪人雄发布了新的文献求助10
16秒前
万能图书馆应助晚晚采纳,获得10
16秒前
杨程羽完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762211
求助须知:如何正确求助?哪些是违规求助? 5534714
关于积分的说明 15402511
捐赠科研通 4898495
什么是DOI,文献DOI怎么找? 2634891
邀请新用户注册赠送积分活动 1583051
关于科研通互助平台的介绍 1538203