亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Antenna Coded Caching for Location-Dependent Content Delivery

计算机科学 内容交付 计算机网络 无线 电信
作者
Hamidreza Bakhshzad Mahmoodi,MohammadJavad Salehi,Antti Tölli
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 408-422 被引量:4
标识
DOI:10.1109/twc.2023.3277983
摘要

Human-computer interaction continuously evolves towards a genuinely immersive experience, submerging users in a three-dimensional (3D) virtual world. A realistic, immersive experience necessitates a highly reliable and agile wireless connection to support immense data transmission. Yet, there are abundant but underutilized memory resources available at the devices which can be harnessed as supplementary assets to reduce the excessive burden on the wireless medium. What is more, the use of Coded Caching (CC) techniques enables the cumulative cache memory of users in the network to be used as an additional communication resource. To this end, a location-dependent multi-antenna CC-based content delivery scheme tailored specifically for wireless extended reality applications is proposed in this paper. First, a novel memory allocation process is developed, enabling an appropriate trade-off between local and global caching gains. In this regard, the local caching gain is maximized when the memory is mostly dedicated to locations with poor connectivity conditions (absolute fairness). In contrast, the global caching gain is maximized when the memory is uniformly allocated among all the locations. As a result of the memory allocation process, unequal fractions of location-dependent multimedia content are cached by each user. Given the asymmetric cache placement, a novel algorithm is proposed to create suitable codewords for each user during the subsequent delivery phase, which simultaneously achieves a global and local caching gain. The proposed delivery scheme also combines global caching and spatial multiplexing gains using a weighted max-min multicast beamformer design with multi-rate modulation. Numerical experiments and mathematical analysis demonstrate significant performance gains, in terms of the 95-percentile expected delivery time, compared to unicast and multicast scenarios where either the local or global caching gain is maximized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
徐矜发布了新的文献求助10
3秒前
Janus完成签到,获得积分10
11秒前
23秒前
空咻咻发布了新的文献求助10
27秒前
且听风吟发布了新的文献求助10
28秒前
31秒前
彩色凡英发布了新的文献求助30
32秒前
36秒前
42秒前
且听风吟完成签到,获得积分10
52秒前
53秒前
彩色凡英完成签到,获得积分10
56秒前
FashionBoy应助呜呼采纳,获得10
1分钟前
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
打打应助zz采纳,获得10
1分钟前
张家宁发布了新的文献求助10
2分钟前
2分钟前
zz发布了新的文献求助10
2分钟前
2分钟前
李志全完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
贼歪歪完成签到,获得积分10
2分钟前
传奇3应助Zhao0112采纳,获得10
3分钟前
3分钟前
eatme完成签到,获得积分10
3分钟前
3分钟前
Zhao0112发布了新的文献求助10
3分钟前
彭于晏应助保持科研热情采纳,获得10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755406
求助须知:如何正确求助?哪些是违规求助? 5494623
关于积分的说明 15381200
捐赠科研通 4893493
什么是DOI,文献DOI怎么找? 2632160
邀请新用户注册赠送积分活动 1579994
关于科研通互助平台的介绍 1535824