凝聚
纳米技术
合成生物学
仿生学
仿生材料
生物医学
生化工程
相(物质)
计算机科学
材料科学
工程类
化学
生物
生物信息学
化学工程
有机化学
作者
Shoupeng Cao,Siyu Song,Tsvetomir Ivanov,Thao P. Doan‐Nguyen,Lucas Caire da Silva,Jing Xie,Katharina Landfester
标识
DOI:10.1002/anie.202418431
摘要
Liquid‐liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase‐separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell‐like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life‐like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI