Group sparse low-rank algorithm for ultrasonic guided wave defect feature extraction

超声波传感器 秩(图论) 算法 群(周期表) 特征(语言学) 特征提取 模式识别(心理学) 计算机科学 萃取(化学) 人工智能 数学 组合数学 声学 物理 化学 色谱法 语言学 量子力学 哲学
作者
Xinxin Li,Yuming Wei,Weili Tang,Qian Zhang,Zhijiao Wang,Zhenting Ye,Fengbo Mo
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad96d5
摘要

Abstract Ultrasonic guided wave (UGW) is highly valued in the field of nondestructive testing due to their slow energy decay and extensive detection range, displaying unique advantages particularly in the inspection of long weld defects. However, the signal of defective echo is easily masked by strong noise interference, which makes feature extraction difficult. To address this issue, this paper proposes a Time-Frequency Analysis Overlapping Group Sparse Low-Rank (TFAOGSL) model. Firstly, the group sparsity and low-rankness of ultrasonic guided wave signals are revealed, and the TFAOGSL feature extraction is modelled on this basis. Secondly, the convexity condition of the TFAOGSL model is derived, and its optimal solution is deduced using the alternating direction method of multipliers (ADMM) algorithm in conjunction with the majorization–minimization (MM) algorithm. Additionally, optimal parameters for TFAOGSL were adaptively chosen using simulated signals. Finally, comparisons were made with some state-of-the-art methods, and the effectiveness of TFAOGSL was confirmed through ultrasonic guided wave detection experiments for welding defects. The results demonstrated that this method can accurately extract defect features and has significant advantages compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨田发布了新的文献求助10
刚刚
来篇nature完成签到,获得积分10
刚刚
刚刚
刚刚
包容友儿完成签到,获得积分10
刚刚
菠萝冰棒完成签到,获得积分10
1秒前
lululu发布了新的文献求助100
1秒前
1秒前
ZhaoRongzhe完成签到,获得积分10
1秒前
freebird完成签到,获得积分10
1秒前
汤传麒完成签到,获得积分20
1秒前
Freya完成签到,获得积分10
1秒前
shy完成签到,获得积分10
1秒前
hkp发布了新的文献求助10
1秒前
2秒前
qingmoheng应助anle采纳,获得10
2秒前
科研通AI6应助anle采纳,获得10
2秒前
快乐的妙菱完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
ws完成签到,获得积分20
2秒前
Werner完成签到 ,获得积分10
3秒前
科研通AI2S应助深情代芙采纳,获得10
3秒前
Orange应助刘博士采纳,获得10
3秒前
3秒前
3秒前
4秒前
我是弱智先帮我完成签到,获得积分10
4秒前
汤传麒发布了新的文献求助10
4秒前
快乐的萝莉完成签到,获得积分10
4秒前
zzz发布了新的文献求助10
4秒前
路途遥远完成签到,获得积分10
5秒前
5秒前
鱼憨儿完成签到,获得积分10
5秒前
5秒前
小唐完成签到,获得积分10
5秒前
bkagyin应助lezard采纳,获得10
6秒前
ZhaoRongzhe发布了新的文献求助10
6秒前
香蕉觅云应助科研废人采纳,获得10
6秒前
无私的迎松完成签到 ,获得积分10
6秒前
伶俐剑心完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024