Group sparse low-rank algorithm for ultrasonic guided wave defect feature extraction

超声波传感器 秩(图论) 算法 群(周期表) 特征(语言学) 特征提取 模式识别(心理学) 计算机科学 萃取(化学) 人工智能 数学 组合数学 声学 物理 化学 色谱法 语言学 哲学 量子力学
作者
Xinxin Li,Yuming Wei,Weili Tang,Qian Zhang,Zhijiao Wang,Zhenting Ye,Fengbo Mo
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad96d5
摘要

Abstract Ultrasonic guided wave (UGW) is highly valued in the field of nondestructive testing due to their slow energy decay and extensive detection range, displaying unique advantages particularly in the inspection of long weld defects. However, the signal of defective echo is easily masked by strong noise interference, which makes feature extraction difficult. To address this issue, this paper proposes a Time-Frequency Analysis Overlapping Group Sparse Low-Rank (TFAOGSL) model. Firstly, the group sparsity and low-rankness of ultrasonic guided wave signals are revealed, and the TFAOGSL feature extraction is modelled on this basis. Secondly, the convexity condition of the TFAOGSL model is derived, and its optimal solution is deduced using the alternating direction method of multipliers (ADMM) algorithm in conjunction with the majorization–minimization (MM) algorithm. Additionally, optimal parameters for TFAOGSL were adaptively chosen using simulated signals. Finally, comparisons were made with some state-of-the-art methods, and the effectiveness of TFAOGSL was confirmed through ultrasonic guided wave detection experiments for welding defects. The results demonstrated that this method can accurately extract defect features and has significant advantages compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助摘希采纳,获得10
刚刚
1秒前
Xieyusen完成签到,获得积分10
1秒前
fatcat完成签到,获得积分10
1秒前
HaroldYao发布了新的文献求助10
4秒前
TT发布了新的文献求助10
4秒前
axl发布了新的文献求助10
6秒前
6秒前
情怀应助cabbage008采纳,获得10
7秒前
摘希给摘希的求助进行了留言
7秒前
苗条的中蓝完成签到,获得积分10
7秒前
李健的小迷弟应助yr888采纳,获得10
8秒前
wenx完成签到,获得积分10
9秒前
10秒前
10秒前
Hello应助111采纳,获得10
14秒前
迅速的萧完成签到 ,获得积分10
15秒前
111发布了新的文献求助10
15秒前
烟花应助复杂的巧曼采纳,获得10
16秒前
领导范儿应助axl采纳,获得10
17秒前
慕青应助朴实凝雁采纳,获得10
21秒前
科研顺风完成签到,获得积分10
24秒前
24秒前
桐桐应助tangpanpan采纳,获得10
24秒前
浩然完成签到,获得积分10
25秒前
善学以致用应助科研顺风采纳,获得10
26秒前
NexusExplorer应助老金金采纳,获得10
28秒前
李健的小迷弟应助yongziwu采纳,获得10
29秒前
动听的梦秋完成签到,获得积分20
29秒前
菜菜发布了新的文献求助10
29秒前
jy关闭了jy文献求助
29秒前
华仔应助林伟采纳,获得10
32秒前
uu发布了新的文献求助10
33秒前
tian完成签到 ,获得积分10
35秒前
MNL关闭了MNL文献求助
36秒前
36秒前
脑洞疼应助windyxp采纳,获得10
36秒前
摘希发布了新的文献求助20
37秒前
小二郎应助111采纳,获得10
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594