Group sparse low-rank algorithm for ultrasonic guided wave defect feature extraction

超声波传感器 秩(图论) 算法 群(周期表) 特征(语言学) 特征提取 模式识别(心理学) 计算机科学 萃取(化学) 人工智能 数学 组合数学 声学 物理 化学 色谱法 语言学 量子力学 哲学
作者
Xinxin Li,Yuming Wei,Weili Tang,Qian Zhang,Zhijiao Wang,Zhenting Ye,Fengbo Mo
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad96d5
摘要

Abstract Ultrasonic guided wave (UGW) is highly valued in the field of nondestructive testing due to their slow energy decay and extensive detection range, displaying unique advantages particularly in the inspection of long weld defects. However, the signal of defective echo is easily masked by strong noise interference, which makes feature extraction difficult. To address this issue, this paper proposes a Time-Frequency Analysis Overlapping Group Sparse Low-Rank (TFAOGSL) model. Firstly, the group sparsity and low-rankness of ultrasonic guided wave signals are revealed, and the TFAOGSL feature extraction is modelled on this basis. Secondly, the convexity condition of the TFAOGSL model is derived, and its optimal solution is deduced using the alternating direction method of multipliers (ADMM) algorithm in conjunction with the majorization–minimization (MM) algorithm. Additionally, optimal parameters for TFAOGSL were adaptively chosen using simulated signals. Finally, comparisons were made with some state-of-the-art methods, and the effectiveness of TFAOGSL was confirmed through ultrasonic guided wave detection experiments for welding defects. The results demonstrated that this method can accurately extract defect features and has significant advantages compared to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的芷蕾完成签到,获得积分10
刚刚
刚刚
1秒前
Jasper应助赵新采纳,获得10
1秒前
艾永涛发布了新的文献求助10
1秒前
2秒前
2秒前
上官翠花完成签到,获得积分10
2秒前
2秒前
情怀应助袁胜楠采纳,获得10
3秒前
充电宝应助老马采纳,获得10
3秒前
大模型应助123456采纳,获得20
3秒前
LTYYY完成签到,获得积分20
4秒前
4秒前
Ma完成签到,获得积分20
4秒前
11122发布了新的文献求助10
4秒前
充电宝应助zhangxiaoyu采纳,获得10
5秒前
Hello应助杨乐多采纳,获得10
6秒前
6秒前
6秒前
雪白的山河完成签到 ,获得积分10
6秒前
7秒前
坦率的怜容完成签到,获得积分10
7秒前
多多发布了新的文献求助10
7秒前
7秒前
someone发布了新的文献求助10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
ztgzttt完成签到,获得积分10
9秒前
tina完成签到 ,获得积分10
9秒前
桐桐应助孙煜采纳,获得10
9秒前
赘婿应助李静采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
lining发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610659
求助须知:如何正确求助?哪些是违规求助? 4695146
关于积分的说明 14885752
捐赠科研通 4722969
什么是DOI,文献DOI怎么找? 2545215
邀请新用户注册赠送积分活动 1509959
关于科研通互助平台的介绍 1473103