清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Small Town Population Forecasting and Planning Method Based on Genetic Algorithm and BP Neural Network

人工神经网络 适应性 遗传算法 人口 计算机科学 领域(数学) 一般化 人工智能 机器学习 理论(学习稳定性) 数据挖掘 数学 生态学 生物 数学分析 社会学 人口学 纯数学
作者
Ningning Shen
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425401068
摘要

It is very important to accurately predict the population pattern in the framework of spatial planning in the township development track. In this paper, the basic principle and application field of population forecasting method of urban spatial planning are deeply studied, and the applicability of BP neural network method of genetic evolution to predict population size is described. The study initially used genetic algorithms to refine the initial weights and structure of BP neural networks to improve their proficiency and generalization ability in the interpretation of demographic data. The empirical results show that the method produces superior predictive performance on multiple township demographic data sets, especially when trying to cope with complex population dynamics. In addition, when benchmarked against traditional forecasting models, the technology showed significant enhancements in the accuracy, stability, and adaptability of predictive models. These results suggest that combining GA-driven evolution with BP neural networks provides a more robust and precise tool for population prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
DarkPegasus完成签到,获得积分10
5秒前
1yyyyyy发布了新的文献求助10
9秒前
17秒前
24秒前
称心的晓霜完成签到,获得积分10
44秒前
47秒前
48秒前
量子星尘发布了新的文献求助10
51秒前
52秒前
1分钟前
1分钟前
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
輕瘋发布了新的文献求助10
2分钟前
輕瘋完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
葛力完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732460
求助须知:如何正确求助?哪些是违规求助? 5339547
关于积分的说明 15322262
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620838
邀请新用户注册赠送积分活动 1570005
关于科研通互助平台的介绍 1526699