Hybrid CBAM-EfficientNetV2 Fire Image Recognition Method with Label Smoothing in Detecting Tiny Targets

平滑的 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像(数学)
作者
Bo Wang,Guozhong Huang,Haoxuan Li,Xiaolong Chen,Lei Zhang,Xuehong Gao
标识
DOI:10.1007/s11633-023-1445-5
摘要

Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning. Aiming at the problems of low accuracy of existing fire recognition and high error rate of tiny target detection, this study proposed a fire recognition model based on a channel space attention mechanism. First, the convolutional block attention module (CBAM) is introduced into the first and last convolutional layers EfficientNetV2, which shows strong feature extraction ability and high computational efficiency as the backbone network. In terms of channel and space aspects, the weights in the feature layer are increased, which enhances the semantic information of flame smoke features and makes the model pay more attention to the feature information of fire images. Then, label smoothing based on the cross-entropy loss function is introduced into this study to avoid predicting labels too confidently in the training process to improve the generalization ability of the recognition model. The experimental results show that the fire image recognition accuracy based on the CBAM-EfficientNetV2 model reaches 98.9%. The accuracy of smoke image recognition can reach 98.5%. The accuracy of small target detection can reach 96.1%. At the same time, we compared the existing methods and found that the proposed method achieved higher accuracy, precision, recall, and F1-score. Finally, the fire image results are visualized using the Grad-CAM technique, which makes the model more effective and more intuitive in detecting tiny targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟祥勤完成签到,获得积分10
刚刚
科研小郭发布了新的文献求助30
1秒前
1秒前
甜甜的含之完成签到,获得积分10
2秒前
2秒前
SciGPT应助Jero采纳,获得10
2秒前
2秒前
David发布了新的文献求助20
4秒前
传奇3应助富有的酒窝采纳,获得10
5秒前
木槿发布了新的文献求助10
5秒前
5秒前
嗷呜ww发布了新的文献求助10
5秒前
SYanan完成签到 ,获得积分10
7秒前
毛豆应助昂莫达采纳,获得10
7秒前
8秒前
Bottle完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
Sudon完成签到 ,获得积分10
10秒前
Owen应助景清采纳,获得10
11秒前
serayu123完成签到,获得积分10
11秒前
12秒前
九日完成签到,获得积分10
12秒前
11完成签到,获得积分10
13秒前
14秒前
guoguo发布了新的文献求助30
14秒前
怡米李发布了新的文献求助10
14秒前
guoguo1119发布了新的文献求助10
15秒前
嗷呜ww完成签到,获得积分10
15秒前
16秒前
16秒前
小蓝应助学术草履虫采纳,获得10
16秒前
17秒前
bigroll完成签到,获得积分10
18秒前
chself完成签到,获得积分20
18秒前
浅音发布了新的文献求助10
19秒前
sfadfaV发布了新的文献求助10
19秒前
伊森完成签到,获得积分10
19秒前
zzz发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092