亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid CBAM-EfficientNetV2 Fire Image Recognition Method with Label Smoothing in Detecting Tiny Targets

平滑的 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像(数学)
作者
Bo Wang,Guozhong Huang,Haoxuan Li,Xiaolong Chen,Lei Zhang,Xuehong Gao
标识
DOI:10.1007/s11633-023-1445-5
摘要

Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning. Aiming at the problems of low accuracy of existing fire recognition and high error rate of tiny target detection, this study proposed a fire recognition model based on a channel space attention mechanism. First, the convolutional block attention module (CBAM) is introduced into the first and last convolutional layers EfficientNetV2, which shows strong feature extraction ability and high computational efficiency as the backbone network. In terms of channel and space aspects, the weights in the feature layer are increased, which enhances the semantic information of flame smoke features and makes the model pay more attention to the feature information of fire images. Then, label smoothing based on the cross-entropy loss function is introduced into this study to avoid predicting labels too confidently in the training process to improve the generalization ability of the recognition model. The experimental results show that the fire image recognition accuracy based on the CBAM-EfficientNetV2 model reaches 98.9%. The accuracy of smoke image recognition can reach 98.5%. The accuracy of small target detection can reach 96.1%. At the same time, we compared the existing methods and found that the proposed method achieved higher accuracy, precision, recall, and F1-score. Finally, the fire image results are visualized using the Grad-CAM technique, which makes the model more effective and more intuitive in detecting tiny targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助禹山河采纳,获得10
3秒前
激动的似狮完成签到,获得积分10
21秒前
gszy1975完成签到,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
哭泣海雪完成签到 ,获得积分10
39秒前
41秒前
免我蹉跎苦完成签到,获得积分20
52秒前
57秒前
机灵水卉完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
大模型应助更明采纳,获得10
1分钟前
1分钟前
VAE完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
博博完成签到,获得积分10
2分钟前
钢钢完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
曹燃发布了新的文献求助10
2分钟前
甜甜的紫菜完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
心灵美凝竹完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
xingsixs完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960125
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069