YOLO-SDL: a lightweight wheat grain detection technology based on an improved YOLOv8n model

计算机科学 核(代数) 自动化 农业工程 深度学习 人工智能 数学 机械工程 组合数学 工程类
作者
Zhaomei Qiu,Fei Wang,Weili Wang,Tingting Li,Xin Jin,Shunhao Qing,Yi Shi
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1495222
摘要

Wheat, being a crucial global food crop, holds immense significance for food safety and agricultural economic stability, as the quality and condition of its grains are critical factors. Traditional methods of wheat grain detection are inefficient, and the advancements in deep learning offer a novel solution for fast and accurate grain recognition. This study proposes an improved deep learning model based on YOLOv8n, referred to as YOLO-SDL, aiming to achieve efficient wheat grain detection. A high-quality wheat grain dataset was first constructed, including images of perfect, germinated, diseased, and damaged grains. Multiple data augmentation techniques were employed to enhance the dataset’s complexity and diversity. The YOLO-SDL model incorporates the ShuffleNetV2 architecture in its backbone and combines depthwise separable convolutions (DWConv) with the large separable kernel attention (LSKA) mechanism in its neck structure, significantly improving detection speed and accuracy while ensuring the model remains lightweight. The results indicate that YOLO-SDL achieves superior performance in wheat grain detection, balancing lightweight design and performance optimization. The model achieved a P of 0.942, R of 0.903, mAP50 of 0.965, and mAP50-95 of 0.859, with low computational complexity, making it suitable for resource-constrained environments. These findings demonstrate the efficiency of the ShuffleNetV2, DWConv, and LSKA structures. The proposed YOLO-SDL model provides a new technical solution for agricultural automation and serves as a reliable reference for detecting other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coffeecoffee完成签到,获得积分10
刚刚
wucl1990完成签到,获得积分10
1秒前
2秒前
路人甲路人乙完成签到 ,获得积分10
3秒前
Laputa完成签到,获得积分10
4秒前
007完成签到,获得积分10
5秒前
毛123发布了新的文献求助80
5秒前
guoguoguo发布了新的文献求助10
5秒前
6秒前
蓝色芒果完成签到,获得积分10
8秒前
9秒前
fxx完成签到,获得积分10
9秒前
直率的心情完成签到,获得积分10
9秒前
12秒前
lx发布了新的文献求助10
14秒前
15秒前
15秒前
熙慕完成签到,获得积分10
16秒前
PhD_HanWu完成签到,获得积分10
18秒前
科研通AI2S应助minekirito采纳,获得10
19秒前
黄腾完成签到,获得积分10
19秒前
禹无极发布了新的文献求助10
19秒前
呆萌背包完成签到,获得积分10
19秒前
以梦为马发布了新的文献求助10
23秒前
baolongzhan完成签到,获得积分10
23秒前
26秒前
26秒前
pcwang完成签到,获得积分10
28秒前
子车茗应助向秋采纳,获得30
29秒前
11111发布了新的文献求助10
30秒前
liu完成签到,获得积分10
30秒前
Hannah发布了新的文献求助10
31秒前
pwx完成签到,获得积分10
33秒前
34秒前
平常的毛豆应助蜜CC采纳,获得10
37秒前
GGGGEEEE应助輝23采纳,获得10
37秒前
37秒前
37秒前
大个应助pphss采纳,获得10
37秒前
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258391
求助须知:如何正确求助?哪些是违规求助? 2900235
关于积分的说明 8309424
捐赠科研通 2569468
什么是DOI,文献DOI怎么找? 1395729
科研通“疑难数据库(出版商)”最低求助积分说明 653273
邀请新用户注册赠送积分活动 631176