Dynamic Optimization of Vehicle Production Planning in Transportation Networks Using Federated Reinforcement Learning

强化学习 计算机科学 运输工程 生产(经济) 智能交通系统 工程类 人工智能 经济 宏观经济学
作者
Jinhua Chen,Zhu Xiao-gang,Chinmay Chakraborty,Manisha Guduri,Abdullah Alharbi,Amr Tolba,Keping Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3522523
摘要

Modern transportation networks, with their complexity and dynamic nature, have a substantial demand for intelligent vehicles. Developing effective production strategies for smart vehicles is essential to reducing both production costs and energy consumption. Traditional vehicle production planning has largely depended on heuristic algorithms and solvers, which lack scalability and are susceptible to local optima. Furthermore, existing solutions do not concurrently address both dynamic and regular vehicle production planning. To overcome these limitations, this paper proposes an effective optimizing method for large-scale smart manufacturing within intelligent transportation networks using Federated Reinforcement Learning. In our proposal, the Gated Recurrent Unit and Asynchronous Advantage Actor Critic (A3C) reinforcement algorithms are employed to develop a Dynamic Optimizing Planning Module(DOPM), which can output an excellent solution of 1000 vehicles within 5 seconds. A High-Quality Processing Module(HQPM) is constructed by the Transformer with A3C, significantly enhancing the production plan's quality. Finally, the proposed methods will integrate with Federated Learning (FL) to establish a scalable, privacy-preserving intelligent manufacturing scheduling framework for transportation networks. Experimental results demonstrate that our work significantly outperforms traditional solutions, achieving over a 93% improvement in solving speed and reducing constraint violations by more than 95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hope完成签到,获得积分10
刚刚
gfy完成签到,获得积分20
刚刚
3秒前
blue完成签到,获得积分10
4秒前
4秒前
血红蛋白发布了新的文献求助10
4秒前
5秒前
至秦发布了新的文献求助10
5秒前
yang发布了新的文献求助10
5秒前
方舟花完成签到,获得积分10
6秒前
祭礼之龙发布了新的文献求助10
7秒前
zdx12324发布了新的文献求助10
7秒前
HJJHJH发布了新的文献求助30
8秒前
赘婿应助辣辣采纳,获得10
9秒前
Firo完成签到,获得积分10
10秒前
勤恳幻丝发布了新的文献求助10
10秒前
11秒前
Orange应助Dan采纳,获得10
12秒前
科研通AI5应助江上烟采纳,获得10
12秒前
祭礼之龙完成签到,获得积分10
15秒前
16秒前
17秒前
Faye完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
乱咬人关注了科研通微信公众号
19秒前
20秒前
20秒前
21秒前
bluelu发布了新的文献求助10
21秒前
yang发布了新的文献求助10
21秒前
标致溪流发布了新的文献求助10
23秒前
23秒前
所所应助顺心的映梦采纳,获得10
23秒前
24秒前
24秒前
yr888完成签到,获得积分10
24秒前
Dan发布了新的文献求助10
25秒前
黑纸一张发布了新的文献求助100
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944