Enhancing the Transferability of Adversarial Attacks via Multi-Feature Attention

对抗制 计算机科学 可转让性 特征(语言学) 计算机安全 特征提取 人工智能 模式识别(心理学) 数据挖掘 机器学习 语言学 哲学 罗伊特
作者
Desheng Zheng,Wuping Ke,Xiaoyu Li,Yaoxin Duan,Guangqiang Yin,Fan Min
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2025.3526067
摘要

Adversarial examples have posed a serious threat to deep neural networks due to their transferability. Existing transfer-based attacks tend to improve the transferability of adversarial examples by destroying intrinsic features. However, prior work typically employed single-dimensional or additive importance estimates, which provide inaccurate representations of features. In this work, we propose the Multi-Feature Attention Attack (MFAA), which fuses multiple layers of feature representations to disrupt category-related features and thus improve the transferability of the adversarial examples. First, MFAA introduces a layer-aggregation gradient (LAG) to obtain guidance maps, which reflect the importance of features in multiple scales. Second, it generates ensemble attention (EA), preserving object-specific features and offsetting model-specific features based on the guidance maps. Third, EA is iteratively disturbed to achieve high transferability of the adversarial examples. Empirical evaluation on the standard ImageNet dataset shows that adversarial examples crafted by MFAA can effectively attack different networks. Compared to the state-of-the-art transferable attacks, our attack improves the average attack success rate of the black-box model with defense from 88.5% to 94.1% on single-model attacks and from 86.6% to 95.1% on ensemble attacks. Our code is available at Github: https://github.com/KWPCCC/MFAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
catear发布了新的文献求助10
3秒前
3秒前
6a发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
天选牛马人完成签到,获得积分10
7秒前
7秒前
桐桐应助zy采纳,获得10
7秒前
科研通AI6应助mr_chxb82采纳,获得10
8秒前
霝愿发布了新的文献求助10
8秒前
9秒前
9秒前
dlfg发布了新的文献求助10
10秒前
打打应助猪猪hero采纳,获得10
10秒前
11秒前
麦苗果果发布了新的文献求助10
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
catear完成签到,获得积分10
13秒前
13秒前
13秒前
852应助丁玉杰采纳,获得10
14秒前
usee完成签到,获得积分10
15秒前
霝愿完成签到,获得积分20
15秒前
zzzp发布了新的文献求助20
15秒前
深情安青应助小米粥采纳,获得10
17秒前
18秒前
LeimingDai发布了新的文献求助20
18秒前
Kang完成签到,获得积分20
19秒前
Rose发布了新的文献求助10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439