Enhancing the Transferability of Adversarial Attacks via Multi-Feature Attention

对抗制 计算机科学 可转让性 特征(语言学) 计算机安全 特征提取 人工智能 模式识别(心理学) 数据挖掘 机器学习 语言学 哲学 罗伊特
作者
Desheng Zheng,Wuping Ke,Xiaoyu Li,Yaoxin Duan,Guangqiang Yin,Fan Min
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2025.3526067
摘要

Adversarial examples have posed a serious threat to deep neural networks due to their transferability. Existing transfer-based attacks tend to improve the transferability of adversarial examples by destroying intrinsic features. However, prior work typically employed single-dimensional or additive importance estimates, which provide inaccurate representations of features. In this work, we propose the Multi-Feature Attention Attack (MFAA), which fuses multiple layers of feature representations to disrupt category-related features and thus improve the transferability of the adversarial examples. First, MFAA introduces a layer-aggregation gradient (LAG) to obtain guidance maps, which reflect the importance of features in multiple scales. Second, it generates ensemble attention (EA), preserving object-specific features and offsetting model-specific features based on the guidance maps. Third, EA is iteratively disturbed to achieve high transferability of the adversarial examples. Empirical evaluation on the standard ImageNet dataset shows that adversarial examples crafted by MFAA can effectively attack different networks. Compared to the state-of-the-art transferable attacks, our attack improves the average attack success rate of the black-box model with defense from 88.5% to 94.1% on single-model attacks and from 86.6% to 95.1% on ensemble attacks. Our code is available at Github: https://github.com/KWPCCC/MFAA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Snail6发布了新的文献求助10
刚刚
玉米完成签到,获得积分10
1秒前
1秒前
小烟花完成签到,获得积分10
1秒前
豆豆发布了新的文献求助10
1秒前
NexusExplorer应助疯狂老马采纳,获得30
2秒前
TRY完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
威武好吐司完成签到 ,获得积分10
3秒前
苗条花生完成签到,获得积分10
3秒前
富婆阳西完成签到 ,获得积分10
3秒前
3秒前
zzt发布了新的文献求助10
3秒前
天天快乐应助PAN采纳,获得10
3秒前
向磊完成签到,获得积分10
4秒前
liuyac完成签到,获得积分10
4秒前
磐xst完成签到 ,获得积分10
4秒前
北世完成签到,获得积分10
4秒前
ww发布了新的文献求助10
4秒前
傲娇灯泡发布了新的文献求助10
5秒前
5秒前
天天快乐应助玉米采纳,获得10
5秒前
科研小虫完成签到,获得积分10
5秒前
ice完成签到,获得积分20
5秒前
帅气尔琴发布了新的文献求助10
6秒前
Rocket_team发布了新的文献求助10
6秒前
Spring发布了新的文献求助10
6秒前
静夜谧思发布了新的文献求助10
6秒前
科研努力版完成签到 ,获得积分10
6秒前
6秒前
zqqq完成签到,获得积分10
6秒前
超级丝完成签到,获得积分10
7秒前
科目三应助静柏采纳,获得10
7秒前
7秒前
飞机炸弹发布了新的文献求助10
7秒前
喜悦的鬼神完成签到 ,获得积分10
7秒前
7秒前
7秒前
comeon完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585532
求助须知:如何正确求助?哪些是违规求助? 4669292
关于积分的说明 14776112
捐赠科研通 4618063
什么是DOI,文献DOI怎么找? 2530567
邀请新用户注册赠送积分活动 1499302
关于科研通互助平台的介绍 1467697