Enhancing the Transferability of Adversarial Attacks via Multi-Feature Attention

对抗制 计算机科学 可转让性 特征(语言学) 计算机安全 特征提取 人工智能 模式识别(心理学) 数据挖掘 机器学习 语言学 哲学 罗伊特
作者
Desheng Zheng,Wuping Ke,Xiaoyu Li,Yaoxin Duan,Guangqiang Yin,Fan Min
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2025.3526067
摘要

Adversarial examples have posed a serious threat to deep neural networks due to their transferability. Existing transfer-based attacks tend to improve the transferability of adversarial examples by destroying intrinsic features. However, prior work typically employed single-dimensional or additive importance estimates, which provide inaccurate representations of features. In this work, we propose the Multi-Feature Attention Attack (MFAA), which fuses multiple layers of feature representations to disrupt category-related features and thus improve the transferability of the adversarial examples. First, MFAA introduces a layer-aggregation gradient (LAG) to obtain guidance maps, which reflect the importance of features in multiple scales. Second, it generates ensemble attention (EA), preserving object-specific features and offsetting model-specific features based on the guidance maps. Third, EA is iteratively disturbed to achieve high transferability of the adversarial examples. Empirical evaluation on the standard ImageNet dataset shows that adversarial examples crafted by MFAA can effectively attack different networks. Compared to the state-of-the-art transferable attacks, our attack improves the average attack success rate of the black-box model with defense from 88.5% to 94.1% on single-model attacks and from 86.6% to 95.1% on ensemble attacks. Our code is available at Github: https://github.com/KWPCCC/MFAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
隐形曼青应助高高问柳采纳,获得10
9秒前
桐桐应助shenzhou9采纳,获得10
9秒前
毛豆应助宋志帅采纳,获得10
9秒前
10秒前
Owen应助Millennial采纳,获得30
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
科研通AI2S应助han采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
13秒前
Lucas应助科研通管家采纳,获得30
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
MayLuoA应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
gwrh完成签到,获得积分20
15秒前
16秒前
dabai发布了新的文献求助10
16秒前
镜川禾夕应助tttttt采纳,获得10
16秒前
17秒前
Rikuya发布了新的文献求助10
19秒前
鹿谷波发布了新的文献求助10
21秒前
21秒前
小薇完成签到,获得积分10
21秒前
22秒前
充电宝应助嘿嘿采纳,获得10
23秒前
LLL完成签到,获得积分20
24秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421740
求助须知:如何正确求助?哪些是违规求助? 3022352
关于积分的说明 8900384
捐赠科研通 2709598
什么是DOI,文献DOI怎么找? 1485995
科研通“疑难数据库(出版商)”最低求助积分说明 686938
邀请新用户注册赠送积分活动 682069