Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much

蛋白质数据库 蛋白质数据库 配体(生物化学) 蛋白质结构 星团(航天器) 计算生物学 化学 结晶学 生物系统 生物 立体化学 计算机科学 生物化学 受体 程序设计语言
作者
Maria Lazou,Omeir Khan,Thu Nguyen,Dzmitry Padhorny,Dima Kozakov,Diane Joseph‐McCarthy,Sándor Vajda
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (48)
标识
DOI:10.1073/pnas.2412719121
摘要

The goal of this paper is predicting the conformational distributions of ligand binding sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic subsampling of the multiple sequence alignment (MSA). We explored the opening of cryptic ligand binding sites in 16 proteins, where the closed and open conformations define the expected extreme points of the conformational variation. Due to the many structures of these proteins in the Protein Data Bank (PDB), we were able to study whether the distribution of X-ray structures affects the distribution of AF2 models. We have found that AF2 generates both a cluster of open and a cluster of closed models for proteins that have comparable numbers of open and closed structures in the PDB and not too many other conformations. This was observed even with default MSA parameters, thus without further subsampling. In contrast, with the exception of a single protein, AF2 did not yield multiple clusters of conformations for proteins that had imbalanced numbers of open and closed structures in the PDB, or had substantial numbers of other structures. Subsampling improved the results only for a single protein, but very shallow MSA led to incorrect structures. The ability of generating both open and closed conformations for six out of the 16 proteins agrees with the success rates of similar studies reported in the literature. However, we showed that this partial success is due to AF2 “remembering” the conformational distributions in the PDB and that the approach fails to predict rarely seen conformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼尔烟完成签到,获得积分10
刚刚
Evelyn_ding完成签到,获得积分10
刚刚
刚刚
你知道qee吗完成签到,获得积分10
1秒前
赘婿应助彩色的大碗采纳,获得10
1秒前
乌苏苏发布了新的文献求助10
1秒前
Nan发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助yangyyyy采纳,获得20
2秒前
sssss完成签到,获得积分10
2秒前
娇姐666完成签到 ,获得积分10
2秒前
香蕉觅云应助ss采纳,获得10
2秒前
leyangya完成签到,获得积分10
3秒前
3秒前
yan完成签到,获得积分10
3秒前
wxy完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
奶油泡fu发布了新的文献求助10
5秒前
儒雅大白发布了新的文献求助10
5秒前
Owen应助今晚吃什么采纳,获得10
5秒前
5秒前
silencer完成签到 ,获得积分10
5秒前
6秒前
黎黎发布了新的文献求助10
6秒前
打打应助zzy采纳,获得10
6秒前
LIUjun完成签到,获得积分20
6秒前
7秒前
充电宝应助元白采纳,获得10
7秒前
香梨椰果发布了新的文献求助10
8秒前
innyjiang完成签到,获得积分10
8秒前
8秒前
菠萝发布了新的文献求助10
8秒前
光亮的秋白完成签到,获得积分10
9秒前
Dengzi发布了新的文献求助10
9秒前
达达完成签到,获得积分10
9秒前
10秒前
ctttt发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652046
求助须知:如何正确求助?哪些是违规求助? 4786625
关于积分的说明 15058014
捐赠科研通 4810687
什么是DOI,文献DOI怎么找? 2573318
邀请新用户注册赠送积分活动 1529217
关于科研通互助平台的介绍 1488138