亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much

蛋白质数据库 蛋白质数据库 配体(生物化学) 蛋白质结构 星团(航天器) 计算生物学 化学 结晶学 生物系统 生物 立体化学 计算机科学 生物化学 受体 程序设计语言
作者
Maria Lazou,Omeir Khan,Thu Nguyen,Dzmitry Padhorny,Dima Kozakov,Diane Joseph‐McCarthy,Sándor Vajda
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (48)
标识
DOI:10.1073/pnas.2412719121
摘要

The goal of this paper is predicting the conformational distributions of ligand binding sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic subsampling of the multiple sequence alignment (MSA). We explored the opening of cryptic ligand binding sites in 16 proteins, where the closed and open conformations define the expected extreme points of the conformational variation. Due to the many structures of these proteins in the Protein Data Bank (PDB), we were able to study whether the distribution of X-ray structures affects the distribution of AF2 models. We have found that AF2 generates both a cluster of open and a cluster of closed models for proteins that have comparable numbers of open and closed structures in the PDB and not too many other conformations. This was observed even with default MSA parameters, thus without further subsampling. In contrast, with the exception of a single protein, AF2 did not yield multiple clusters of conformations for proteins that had imbalanced numbers of open and closed structures in the PDB, or had substantial numbers of other structures. Subsampling improved the results only for a single protein, but very shallow MSA led to incorrect structures. The ability of generating both open and closed conformations for six out of the 16 proteins agrees with the success rates of similar studies reported in the literature. However, we showed that this partial success is due to AF2 “remembering” the conformational distributions in the PDB and that the approach fails to predict rarely seen conformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大园完成签到 ,获得积分10
6秒前
Eileen完成签到 ,获得积分0
16秒前
大模型应助catherine采纳,获得10
35秒前
52秒前
shhoing应助科研通管家采纳,获得10
56秒前
orixero应助科研通管家采纳,获得10
56秒前
gexzygg应助科研通管家采纳,获得10
56秒前
王誉霖发布了新的文献求助10
56秒前
Ccccn完成签到,获得积分10
59秒前
1分钟前
斯文败类应助精明的靖雁采纳,获得10
1分钟前
CodeCraft应助Li采纳,获得10
1分钟前
1分钟前
StonesKing发布了新的文献求助10
1分钟前
2分钟前
kale123发布了新的文献求助10
2分钟前
Li发布了新的文献求助10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
可爱的函函应助Li采纳,获得10
3分钟前
3分钟前
catherine发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
阳光的丹雪完成签到,获得积分10
4分钟前
4分钟前
Li发布了新的文献求助10
4分钟前
yt完成签到 ,获得积分10
4分钟前
4分钟前
tyr001发布了新的文献求助30
4分钟前
Yanyu完成签到,获得积分10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
Ava应助tyr001采纳,获得10
4分钟前
Yanyu发布了新的文献求助100
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
赘婿应助Bosen采纳,获得10
5分钟前
5分钟前
Bosen发布了新的文献求助10
5分钟前
山水主人完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549332
求助须知:如何正确求助?哪些是违规求助? 4634617
关于积分的说明 14634915
捐赠科研通 4576098
什么是DOI,文献DOI怎么找? 2509504
邀请新用户注册赠送积分活动 1485354
关于科研通互助平台的介绍 1456572