Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much

蛋白质数据库 蛋白质数据库 配体(生物化学) 蛋白质结构 星团(航天器) 计算生物学 化学 结晶学 生物系统 生物 立体化学 计算机科学 生物化学 受体 程序设计语言
作者
Maria Lazou,Omeir Khan,Thu Nguyen,Dzmitry Padhorny,Dima Kozakov,Diane Joseph‐McCarthy,Sándor Vajda
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (48)
标识
DOI:10.1073/pnas.2412719121
摘要

The goal of this paper is predicting the conformational distributions of ligand binding sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic subsampling of the multiple sequence alignment (MSA). We explored the opening of cryptic ligand binding sites in 16 proteins, where the closed and open conformations define the expected extreme points of the conformational variation. Due to the many structures of these proteins in the Protein Data Bank (PDB), we were able to study whether the distribution of X-ray structures affects the distribution of AF2 models. We have found that AF2 generates both a cluster of open and a cluster of closed models for proteins that have comparable numbers of open and closed structures in the PDB and not too many other conformations. This was observed even with default MSA parameters, thus without further subsampling. In contrast, with the exception of a single protein, AF2 did not yield multiple clusters of conformations for proteins that had imbalanced numbers of open and closed structures in the PDB, or had substantial numbers of other structures. Subsampling improved the results only for a single protein, but very shallow MSA led to incorrect structures. The ability of generating both open and closed conformations for six out of the 16 proteins agrees with the success rates of similar studies reported in the literature. However, we showed that this partial success is due to AF2 “remembering” the conformational distributions in the PDB and that the approach fails to predict rarely seen conformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KAWHI完成签到,获得积分10
刚刚
pluto应助Blackrainbow采纳,获得10
刚刚
Cathy完成签到,获得积分10
刚刚
碳酸氢钠完成签到,获得积分10
1秒前
1秒前
2秒前
好好好完成签到 ,获得积分10
2秒前
111发布了新的文献求助10
2秒前
3秒前
韩梅发布了新的文献求助10
3秒前
叶子完成签到,获得积分0
3秒前
墨鱼汁拌饭完成签到,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
rr发布了新的文献求助10
4秒前
Hayworth完成签到,获得积分20
4秒前
明理含之发布了新的文献求助10
4秒前
汉堡包应助传统的松鼠采纳,获得10
4秒前
科研通AI6应助细心南风采纳,获得10
5秒前
5秒前
东方诩完成签到,获得积分10
5秒前
Orange应助ZunyeLiu采纳,获得10
6秒前
Ysera发布了新的文献求助10
6秒前
Cell完成签到,获得积分10
6秒前
李晶晶发布了新的文献求助10
6秒前
落叶完成签到,获得积分10
6秒前
Moudexiao完成签到 ,获得积分10
7秒前
顾矜应助顺心蜜粉采纳,获得30
7秒前
7秒前
欧阳小司发布了新的文献求助10
7秒前
龟龟发布了新的文献求助10
8秒前
123关闭了123文献求助
8秒前
JUri发布了新的文献求助10
9秒前
9秒前
wanci发布了新的文献求助20
9秒前
9秒前
10秒前
舒心谷雪完成签到 ,获得积分10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699126
求助须知:如何正确求助?哪些是违规求助? 5129127
关于积分的说明 15224490
捐赠科研通 4854057
什么是DOI,文献DOI怎么找? 2604442
邀请新用户注册赠送积分活动 1555961
关于科研通互助平台的介绍 1514252