Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much

蛋白质数据库 蛋白质数据库 配体(生物化学) 蛋白质结构 星团(航天器) 计算生物学 化学 结晶学 生物系统 生物 立体化学 计算机科学 生物化学 受体 程序设计语言
作者
Maria Lazou,Omeir Khan,Thu Nguyen,Dzmitry Padhorny,Dima Kozakov,Diane Joseph‐McCarthy,Sándor Vajda
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (48)
标识
DOI:10.1073/pnas.2412719121
摘要

The goal of this paper is predicting the conformational distributions of ligand binding sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic subsampling of the multiple sequence alignment (MSA). We explored the opening of cryptic ligand binding sites in 16 proteins, where the closed and open conformations define the expected extreme points of the conformational variation. Due to the many structures of these proteins in the Protein Data Bank (PDB), we were able to study whether the distribution of X-ray structures affects the distribution of AF2 models. We have found that AF2 generates both a cluster of open and a cluster of closed models for proteins that have comparable numbers of open and closed structures in the PDB and not too many other conformations. This was observed even with default MSA parameters, thus without further subsampling. In contrast, with the exception of a single protein, AF2 did not yield multiple clusters of conformations for proteins that had imbalanced numbers of open and closed structures in the PDB, or had substantial numbers of other structures. Subsampling improved the results only for a single protein, but very shallow MSA led to incorrect structures. The ability of generating both open and closed conformations for six out of the 16 proteins agrees with the success rates of similar studies reported in the literature. However, we showed that this partial success is due to AF2 “remembering” the conformational distributions in the PDB and that the approach fails to predict rarely seen conformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助30
2秒前
5秒前
ncuwzq完成签到,获得积分10
7秒前
Cat4pig完成签到 ,获得积分10
11秒前
JodieZhu发布了新的文献求助30
12秒前
12秒前
青云完成签到,获得积分10
15秒前
bclddmy完成签到,获得积分10
18秒前
清风荷影完成签到 ,获得积分10
21秒前
cgs完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
NexusExplorer应助Alien采纳,获得10
26秒前
李健应助JodieZhu采纳,获得30
30秒前
30秒前
31秒前
大轩完成签到 ,获得积分10
32秒前
自信书文完成签到 ,获得积分10
33秒前
33秒前
Lrcx完成签到 ,获得积分10
33秒前
苒苒完成签到,获得积分10
35秒前
36秒前
38秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
学术小白完成签到,获得积分10
43秒前
科目三应助眯眯眼的山柳采纳,获得10
44秒前
45秒前
是真的完成签到 ,获得积分10
46秒前
jzmulyl完成签到,获得积分10
47秒前
深情安青应助饭饭采纳,获得10
47秒前
50秒前
凤迎雪飘完成签到,获得积分10
51秒前
大饼完成签到 ,获得积分10
53秒前
jzmupyj完成签到,获得积分10
55秒前
57秒前
lzx关闭了lzx文献求助
58秒前
愉快的犀牛完成签到 ,获得积分10
58秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733107
求助须知:如何正确求助?哪些是违规求助? 5345829
关于积分的说明 15323061
捐赠科研通 4878300
什么是DOI,文献DOI怎么找? 2621144
邀请新用户注册赠送积分活动 1570261
关于科研通互助平台的介绍 1527144