Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much

蛋白质数据库 蛋白质数据库 配体(生物化学) 蛋白质结构 星团(航天器) 计算生物学 化学 结晶学 生物系统 生物 立体化学 计算机科学 生物化学 受体 程序设计语言
作者
Maria Lazou,Omeir Khan,Thu Nguyen,Dzmitry Padhorny,Dima Kozakov,Diane Joseph‐McCarthy,Sándor Vajda
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (48)
标识
DOI:10.1073/pnas.2412719121
摘要

The goal of this paper is predicting the conformational distributions of ligand binding sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic subsampling of the multiple sequence alignment (MSA). We explored the opening of cryptic ligand binding sites in 16 proteins, where the closed and open conformations define the expected extreme points of the conformational variation. Due to the many structures of these proteins in the Protein Data Bank (PDB), we were able to study whether the distribution of X-ray structures affects the distribution of AF2 models. We have found that AF2 generates both a cluster of open and a cluster of closed models for proteins that have comparable numbers of open and closed structures in the PDB and not too many other conformations. This was observed even with default MSA parameters, thus without further subsampling. In contrast, with the exception of a single protein, AF2 did not yield multiple clusters of conformations for proteins that had imbalanced numbers of open and closed structures in the PDB, or had substantial numbers of other structures. Subsampling improved the results only for a single protein, but very shallow MSA led to incorrect structures. The ability of generating both open and closed conformations for six out of the 16 proteins agrees with the success rates of similar studies reported in the literature. However, we showed that this partial success is due to AF2 “remembering” the conformational distributions in the PDB and that the approach fails to predict rarely seen conformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是但求其爱完成签到,获得积分10
4秒前
凪白完成签到,获得积分10
6秒前
情怀应助心灵美从寒采纳,获得10
6秒前
勿明应助2025超分子化学采纳,获得30
7秒前
舒心的亦瑶完成签到 ,获得积分10
8秒前
文武贝发布了新的文献求助10
8秒前
11秒前
12秒前
明月清风完成签到,获得积分10
13秒前
abc完成签到 ,获得积分10
14秒前
Jitiantian完成签到,获得积分20
15秒前
16秒前
鲸海发布了新的文献求助10
16秒前
小敏发布了新的文献求助10
18秒前
哎呀呀呀发布了新的文献求助10
19秒前
Owen应助科研通管家采纳,获得10
21秒前
风中的冰蓝完成签到,获得积分10
24秒前
鲸海完成签到 ,获得积分10
26秒前
sadascaqwqw完成签到 ,获得积分10
30秒前
30秒前
忧郁冰真完成签到,获得积分10
30秒前
30秒前
30秒前
伊叶之丘完成签到 ,获得积分10
33秒前
34秒前
35秒前
栖梧砚客完成签到,获得积分10
40秒前
Adenine完成签到 ,获得积分10
40秒前
若风完成签到 ,获得积分10
40秒前
卢彦冬发布了新的文献求助10
40秒前
40秒前
上官若男应助你想读博吗采纳,获得10
41秒前
孤独谷蕊完成签到,获得积分10
42秒前
CipherSage应助优雅的千凝采纳,获得10
45秒前
47秒前
Jasper应助小陆采纳,获得10
47秒前
47秒前
Olivia完成签到,获得积分10
48秒前
地表飞猪举报雪下卧眠求助涉嫌违规
49秒前
sunflowers发布了新的文献求助10
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997