Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much

蛋白质数据库 蛋白质数据库 配体(生物化学) 蛋白质结构 星团(航天器) 计算生物学 化学 结晶学 生物系统 生物 立体化学 计算机科学 生物化学 受体 程序设计语言
作者
Maria Lazou,Omeir Khan,Thu Nguyen,Dzmitry Padhorny,Dima Kozakov,Diane Joseph‐McCarthy,Sándor Vajda
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (48)
标识
DOI:10.1073/pnas.2412719121
摘要

The goal of this paper is predicting the conformational distributions of ligand binding sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic subsampling of the multiple sequence alignment (MSA). We explored the opening of cryptic ligand binding sites in 16 proteins, where the closed and open conformations define the expected extreme points of the conformational variation. Due to the many structures of these proteins in the Protein Data Bank (PDB), we were able to study whether the distribution of X-ray structures affects the distribution of AF2 models. We have found that AF2 generates both a cluster of open and a cluster of closed models for proteins that have comparable numbers of open and closed structures in the PDB and not too many other conformations. This was observed even with default MSA parameters, thus without further subsampling. In contrast, with the exception of a single protein, AF2 did not yield multiple clusters of conformations for proteins that had imbalanced numbers of open and closed structures in the PDB, or had substantial numbers of other structures. Subsampling improved the results only for a single protein, but very shallow MSA led to incorrect structures. The ability of generating both open and closed conformations for six out of the 16 proteins agrees with the success rates of similar studies reported in the literature. However, we showed that this partial success is due to AF2 “remembering” the conformational distributions in the PDB and that the approach fails to predict rarely seen conformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hanfan发布了新的文献求助10
1秒前
Zwj完成签到 ,获得积分10
1秒前
香蕉觅云应助1111采纳,获得10
1秒前
2秒前
2秒前
华东小可爱完成签到,获得积分10
2秒前
2秒前
狄谷南完成签到,获得积分10
3秒前
无事小神仙完成签到 ,获得积分10
3秒前
ZSH关闭了ZSH文献求助
3秒前
3秒前
3秒前
doctor2023发布了新的文献求助10
4秒前
半夏完成签到,获得积分10
4秒前
wsn发布了新的文献求助10
4秒前
谭婷发布了新的文献求助10
5秒前
华仔应助ZZZ采纳,获得10
5秒前
汉堡包应助灯灯采纳,获得30
5秒前
英俊的铭应助Maxpan采纳,获得10
5秒前
5秒前
微笑的凌旋完成签到 ,获得积分10
5秒前
可爱冰绿完成签到,获得积分10
7秒前
桐桐应助想要发文章采纳,获得10
7秒前
科研通AI2S应助小豆采纳,获得10
7秒前
majf发布了新的文献求助10
7秒前
啊阳发布了新的文献求助10
8秒前
An完成签到 ,获得积分10
8秒前
杜兰特发布了新的文献求助20
8秒前
9秒前
LL完成签到,获得积分20
9秒前
听话的慕卉完成签到,获得积分10
9秒前
秋凛完成签到,获得积分20
10秒前
LLC完成签到 ,获得积分10
10秒前
10秒前
紫色茄子发布了新的文献求助10
10秒前
赘婿应助哈哈采纳,获得10
10秒前
失眠的汽车完成签到,获得积分10
11秒前
hanfan关注了科研通微信公众号
11秒前
李健应助Will_Ji采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494