已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Associations of Postencephalitic Epilepsy Using Multi‐Contrast Whole Brain MRI: A Large Self‐Supervised Vision Foundation Model Strategy

医学 磁共振成像 癫痫 对比度(视觉) 核医学 背景(考古学) 曲线下面积 接收机工作特性 放射科 内科学 人工智能 计算机科学 古生物学 精神科 生物
作者
Ronghui Gao,Anjiao Peng,Yifei Duan,Mengyao Chen,Tao Zheng,Meng Zhang,Lei Chen,Huaiqiang Sun
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29734
摘要

Background Postencephalitic epilepsy (PEE) is a severe neurological complication following encephalitis. Early identification of individuals at high risk for PEE is important for timely intervention. Purpose To develop a large self‐supervised vision foundation model using a big dataset of multi‐contrast head MRI scans, followed by fine‐tuning with MRI data and follow‐up outcomes from patients with PEE to develop a PEE association model. Study Type Retrospective. Population Fifty‐seven thousand six hundred twenty‐one contrast‐enhanced head MRI scans from 34,871 patients for foundation model construction, and head MRI scans from 144 patients with encephalitis (64 PEE, 80 N‐PEE) for the PEE association model. Field Strength/Sequence 1.5‐T, 3‐T, T1‐weighted imaging, T2‐weighted imaging, fluid attenuated inversion recovery, T1‐weighted contrast‐enhanced imaging. Assessment The foundation model was developed using self‐supervised learning and cross‐contrast context recovery. Patients with encephalitis were monitored for a median of 3.7 years (range 0.7–7.5 years), with epilepsy diagnosed according to International League Against Epilepsy. Occlusion sensitivity mapping highlighted brain regions involved in PEE classifications. Model performance was compared with DenseNet without pre‐trained weights. Statistical Tests Performance was assessed via confusion matrices, accuracy, sensitivity, specificity, precision, F1 score, and area under the receiver operating characteristic curve (AUC). The DeLong test evaluated AUC between the two models ( P < 0.05 for statistical significance). Results The PEE association model achieved accuracy, sensitivity, specificity, precision, F1 score, and AUC of 79.3% (95% CI: 0.71–0.92), 92.3% (95% CI: 0.80–1.00), 68.8% (95% CI: 0.55–0.87), 70.6% (95% CI: 0.61–0.90), 80.0% (95% CI: 0.71–0.93), and 81.0% (95% CI: 0.68–0.92), respectively. A significant AUC improvement was found compared to DenseNet (Delong test, P = 0.03). The association model focused on brain regions affected by encephalitis. Data Conclusion Using extensive unlabeled data via self‐supervised learning addressed the limitations of supervised tasks with limited data. The fine‐tuned foundation model outperformed DenseNet, which was trained exclusively on task data. Plain Language Summary This research develops a model to assess the occurrence epilepsy after encephalitis, a severe brain inflammation condition. By using over 57,000 brain scans, the study trains a computer program to recognize patterns in brain images. The model analyzes whole‐brain scans to identify areas commonly affected by the disease, such as the temporal and frontal lobes. It was tested on data from patients with encephalitis and showed better performance than older methods. The model can assess the risk of secondary epilepsy in patients with encephalitis, allowing doctors to intervene early and improve treatment outcomes for those affected by this condition. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
忧虑的羊发布了新的文献求助10
5秒前
酷波er应助丹尼采纳,获得10
6秒前
6秒前
搞学术的成功女人完成签到 ,获得积分10
7秒前
7秒前
9秒前
xuedan发布了新的文献求助10
11秒前
12秒前
WZ发布了新的文献求助10
12秒前
Shayulajiao发布了新的文献求助10
13秒前
研友_VZG7GZ应助Shayulajiao采纳,获得10
17秒前
勤奋尔丝完成签到 ,获得积分10
17秒前
友好睫毛膏完成签到,获得积分10
18秒前
19秒前
spzdss完成签到,获得积分10
19秒前
Hello应助林狗采纳,获得10
21秒前
活泼初之发布了新的文献求助60
24秒前
Gao.发布了新的文献求助10
27秒前
28秒前
陈祥薇发布了新的文献求助10
34秒前
深情老太发布了新的文献求助30
35秒前
赘婿应助开朗又菱采纳,获得10
35秒前
朴素的飞丹完成签到 ,获得积分10
35秒前
Gao.完成签到,获得积分10
37秒前
40秒前
ruiheng完成签到,获得积分10
42秒前
DaLu完成签到,获得积分10
46秒前
48秒前
JamesPei应助开始啦采纳,获得10
50秒前
50秒前
斯文败类应助林狗采纳,获得10
51秒前
Jasper应助大力的姝采纳,获得10
51秒前
科研通AI2S应助活泼初之采纳,获得30
52秒前
香蕉觅云应助Aurora采纳,获得10
53秒前
深情安青应助WZ采纳,获得10
54秒前
55秒前
59秒前
59秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397682
求助须知:如何正确求助?哪些是违规求助? 3006764
关于积分的说明 8822441
捐赠科研通 2693996
什么是DOI,文献DOI怎么找? 1475612
科研通“疑难数据库(出版商)”最低求助积分说明 682482
邀请新用户注册赠送积分活动 675902