Thermal Enhanced Electrokinetic Bacterial Transport in Porous Media

电动现象 多孔介质 热的 多孔性 环境科学 化学 化学工程 材料科学 纳米技术 气象学 工程类 物理 有机化学
作者
Yongping Shan,Huijuan Hao,Jinyao He,Nai-Wen Hu,P. R. Liu,Mingxiu Zhan,Wentao Jiao,Yongguang Yin
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c07954
摘要

Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil. Although electrokinetics breaks the bottleneck of bacterial transport in thin porous media, its efficiency remains limited. Here, we tested the hypothesis that thermal effects enhance electrokinetic transport by shifting the net force acting on the bacterium. We found that heating significantly increased electrokinetic transport by 2.75-fold at 1 V cm–1 through porous media. Thermal enhancement mechanisms were interpreted by the heating shift of net force integrating matrix attractive and electrokinetic forces and verified by the Quartz Crystal Microbalance with Dissipation Monitoring (QCMD) observed adhesion rigidity shift. Thermal-dependent parameters liquid viscosity and dielectric constant were the primary contributors to the net force shift. Their variations reduce the attractive force and augment the electrokinetic forces, resulting in lower adhesion rigidity and enhanced bacterial transport. A mechanism-based approach interlinking electric field strength, thermal effect, and collision efficiency was established to facilitate the application of thermally enhanced electrokinetic bacterial transport. These findings provide new prospects for improving bacterial transport, hence optimizing soil ecosystem functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱英俊完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助九格洗采纳,获得10
1秒前
科研狗关注了科研通微信公众号
2秒前
2秒前
周周完成签到 ,获得积分10
3秒前
伊萨卡完成签到 ,获得积分10
3秒前
潇潇雨歇应助杰Sir采纳,获得10
3秒前
4秒前
5秒前
wyf1996发布了新的文献求助10
5秒前
从容的方盒完成签到 ,获得积分10
5秒前
明理嫣发布了新的文献求助10
5秒前
朱英俊发布了新的文献求助10
5秒前
共享精神应助粱自中采纳,获得10
6秒前
leec完成签到,获得积分10
7秒前
李爱国应助ppp采纳,获得10
8秒前
centlay完成签到,获得积分0
9秒前
情怀应助隐形芹采纳,获得10
9秒前
9秒前
10秒前
共享精神应助开心的若血采纳,获得10
10秒前
研友_nV2Npn发布了新的文献求助10
11秒前
snow完成签到,获得积分10
11秒前
11秒前
柳七完成签到,获得积分10
11秒前
11秒前
wangyb完成签到,获得积分10
12秒前
12秒前
阿柴_Htao完成签到,获得积分10
13秒前
13秒前
科研通AI5应助明理嫣采纳,获得10
13秒前
14秒前
善学以致用应助朱英俊采纳,获得10
15秒前
15秒前
驰驰发布了新的文献求助10
15秒前
舒适的易烟完成签到,获得积分10
15秒前
wxy发布了新的文献求助10
16秒前
TT发布了新的文献求助10
16秒前
浴缸sama完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476968
求助须知:如何正确求助?哪些是违规求助? 3068497
关于积分的说明 9108099
捐赠科研通 2759928
什么是DOI,文献DOI怎么找? 1514467
邀请新用户注册赠送积分活动 700244
科研通“疑难数据库(出版商)”最低求助积分说明 699412