Thermal Enhanced Electrokinetic Bacterial Transport in Porous Media

电动现象 多孔介质 热的 多孔性 环境科学 化学 化学工程 材料科学 纳米技术 气象学 工程类 物理 有机化学
作者
Yongping Shan,Huijuan Hao,Jinyao He,Naiwen Hu,P. R. Liu,Mingxiu Zhan,Wentao Jiao,Yongguang Yin
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (3): 1683-1692 被引量:3
标识
DOI:10.1021/acs.est.4c07954
摘要

Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil. Although electrokinetics breaks the bottleneck of bacterial transport in thin porous media, its efficiency remains limited. Here, we tested the hypothesis that thermal effects enhance electrokinetic transport by shifting the net force acting on the bacterium. We found that heating significantly increased electrokinetic transport by 2.75-fold at 1 V cm-1 through porous media. Thermal enhancement mechanisms were interpreted by the heating shift of net force integrating matrix attractive and electrokinetic forces and verified by the Quartz Crystal Microbalance with Dissipation Monitoring (QCMD) observed adhesion rigidity shift. Thermal-dependent parameters liquid viscosity and dielectric constant were the primary contributors to the net force shift. Their variations reduce the attractive force and augment the electrokinetic forces, resulting in lower adhesion rigidity and enhanced bacterial transport. A mechanism-based approach interlinking electric field strength, thermal effect, and collision efficiency was established to facilitate the application of thermally enhanced electrokinetic bacterial transport. These findings provide new prospects for improving bacterial transport, hence optimizing soil ecosystem functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助岁月轮回采纳,获得10
刚刚
tq发布了新的文献求助10
1秒前
1秒前
热爱科研的小康完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助沙拉酱采纳,获得10
3秒前
4秒前
Aprial完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
汉堡包应助xiaomage采纳,获得10
9秒前
小伊001完成签到,获得积分10
10秒前
王图图发布了新的文献求助10
11秒前
11秒前
罗伊黄完成签到 ,获得积分10
11秒前
12秒前
小马甲应助傅老师采纳,获得10
13秒前
韩嘉琦完成签到,获得积分10
14秒前
岁月轮回发布了新的文献求助10
14秒前
义气丹雪应助热情蓝天采纳,获得50
15秒前
沙拉酱完成签到,获得积分10
15秒前
dyyisash完成签到 ,获得积分10
15秒前
lee完成签到,获得积分10
16秒前
韩嘉琦发布了新的文献求助10
16秒前
云飞扬完成签到,获得积分10
16秒前
17秒前
18秒前
简单沛山完成签到,获得积分10
18秒前
沙拉酱发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
方森岩完成签到,获得积分10
21秒前
21秒前
xiaomage发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712008
求助须知:如何正确求助?哪些是违规求助? 5207072
关于积分的说明 15265901
捐赠科研通 4864051
什么是DOI,文献DOI怎么找? 2611188
邀请新用户注册赠送积分活动 1561440
关于科研通互助平台的介绍 1518761