亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tensor-Representation-Based Multiview Attributed Graph Clustering With Smooth Structure

聚类分析 图形 代表(政治) 计算机科学 张量(固有定义) 人工智能 数学 模式识别(心理学) 理论计算机科学 纯数学 政治 政治学 法学
作者
Yuan Gao,Qian Zhao,Laurence T. Yang,Jing Yang,Lei Ren
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3526590
摘要

Over the past few years, multiview attributed graph clustering has achieved promising performance via various data augmentation strategies. However, we observe that the aggregation of node information in multilayer graph autoencoder (GAE) is prone to deviation, especially when edges or node attributes are randomly perturbed. To this end, we innovatively propose a tensor-representation-based multiview attributed graph clustering framework with smooth structure (MV_AGC) to avoid the bias caused by random view construction. Specifically, we first design a novel tensor-product-based high-order graph attention network (GAT) with structural constraints to realize efficient attribute fusion and semantic consistency encoding. By imposing attribute augmentation mechanisms and smooth constraints (SCs) on the proposed high-order graph attention autoencoder simultaneously, MV_AGC effectively eliminates the instability of reconstructed graph structures and learns a more compact node representation during training. In addition, we also theoretically analyze the stronger generality and expressiveness of the proposed tensor-product-based attention mechanism over the classical GAT and establish an intuitive connection between them. Furthermore, to address the performance degradation caused by clustering distribution updating, we further develop a simple yet effective clustering objective function-guided self-optimizing module for the final clustering performance improvement. Experimental results on the six benchmark datasets have demonstrated that our proposed method can achieve state-of-the-art clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊羊完成签到 ,获得积分10
4秒前
陶醉的蜜蜂完成签到 ,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
汉堡包应助cc采纳,获得10
16秒前
19秒前
22秒前
是是是发布了新的文献求助10
25秒前
29秒前
Owen应助是是是采纳,获得10
32秒前
英俊的铭应助冷艳的立果采纳,获得10
32秒前
37秒前
cc发布了新的文献求助10
43秒前
45秒前
joanna完成签到,获得积分10
45秒前
les完成签到,获得积分10
46秒前
鲜艳的马里奥完成签到,获得积分10
53秒前
53秒前
les发布了新的文献求助10
59秒前
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小二郎应助啊强采纳,获得10
1分钟前
jessie完成签到 ,获得积分10
1分钟前
1分钟前
HJJHJH发布了新的文献求助20
1分钟前
1分钟前
NexusExplorer应助凶狠的秀发采纳,获得10
1分钟前
在水一方完成签到 ,获得积分10
2分钟前
2分钟前
啊强发布了新的文献求助10
2分钟前
2分钟前
禅伯发布了新的文献求助10
2分钟前
2分钟前
2分钟前
是是是发布了新的文献求助10
2分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566604
求助须知:如何正确求助?哪些是违规求助? 3139331
关于积分的说明 9431521
捐赠科研通 2840168
什么是DOI,文献DOI怎么找? 1560963
邀请新用户注册赠送积分活动 730120
科研通“疑难数据库(出版商)”最低求助积分说明 717828