Mixture-of-Experts Based Dissociation Kinetic Model for De Novo Design of HSP90 Inhibitors with Prolonged Residence Time

住所 停留时间(流体动力学) 离解(化学) 化学 动能 有机化学 工程类 物理 社会学 人口学 岩土工程 量子力学
作者
Yujing Zhao,Lei Zhang,Siwen Gu,Qingwei Meng,Li Zhang,Heshuang Wang,Liang Sun,Qilei Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c00726
摘要

The dissociation rate constant (koff) significantly impacts the drug potency and dosing frequency. This work proposes a powerful optimization-based framework for de novo drug design guided by koff. First, a comprehensive database containing 2,773 unique koff values is created. Based on the database, a novel generic dissociation kinetic model is developed with a mixture-of-experts architecture, enabling high-throughput predictions of koff with high accuracy. The developed model is then integrated with an optimization-based mathematical programming approach to design drug candidates with low koff. Finally, the τ-RAMD method is utilized to rigorously verify the designed potential drug candidates. In a case study, the framework successfully identified numerous new potential HSP90 inhibitor candidates, achieving a maximum 45.7% improvement in residence time (τ = 1/koff) compared to that of a known exceptional HSP90 inhibitor. These findings demonstrate the feasibility and effectiveness of the kinetics-guided optimization-based de novo drug design framework in designing drug candidates with prolonged τ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zxc发布了新的文献求助10
刚刚
涨芝士完成签到 ,获得积分10
1秒前
2秒前
无名欧文关注了科研通微信公众号
2秒前
科研123完成签到,获得积分10
4秒前
crescent完成签到 ,获得积分10
6秒前
无奈傲菡发布了新的文献求助10
6秒前
烟花应助123号采纳,获得10
9秒前
超帅的遥完成签到,获得积分10
9秒前
Zxc完成签到,获得积分10
10秒前
lbt完成签到 ,获得积分10
11秒前
yao完成签到 ,获得积分10
12秒前
12秒前
14秒前
15秒前
15秒前
doudou完成签到 ,获得积分10
15秒前
BCS完成签到,获得积分10
15秒前
领导范儿应助KYN采纳,获得10
15秒前
16秒前
独特的莫言完成签到,获得积分10
18秒前
lin发布了新的文献求助10
19秒前
aero完成签到 ,获得积分10
21秒前
123号完成签到,获得积分10
23秒前
充电宝应助TT采纳,获得10
25秒前
26秒前
26秒前
英姑应助荒野星辰采纳,获得10
28秒前
28秒前
YHY完成签到,获得积分10
30秒前
科研通AI5应助魏伯安采纳,获得10
30秒前
caoyy发布了新的文献求助10
30秒前
31秒前
32秒前
张喻235532完成签到,获得积分10
33秒前
失眠虔纹发布了新的文献求助10
34秒前
香蕉觅云应助糊涂的小伙采纳,获得10
34秒前
34秒前
sutharsons应助科研通管家采纳,获得200
36秒前
打打应助科研通管家采纳,获得10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849