Deep learning model for automated diagnosis of moyamoya disease based on magnetic resonance angiography

医学 烟雾病 磁共振成像 放射科 磁共振血管造影 血管造影
作者
Mingming Lu,Yijia Zheng,Shitong Liu,Xiaolan Zhang,Jiahui Lv,Yuan Liu,Baobao Li,Fei Yuan,Peng Peng,Cong Han,Chune Ma,Chao Zheng,Hongtao Zhang,Jianming Cai
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:77: 102888-102888
标识
DOI:10.1016/j.eclinm.2024.102888
摘要

SummaryBackgroundThis study explores the potential of the deep learning-based convolutional neural network (CNN) to automatically recognize MMD using MRA images from atherosclerotic disease (ASD) and normal control (NC).MethodsIn this retrospective study in China, 600 participants (200 MMD, 200 ASD and 200 NC) were collected from one institution as an internal dataset for training and 60 from another institution were collected as external testing set for validation. All participants were divided into training (N = 450) and validation sets (N = 90), internal testing set (N = 60), and external testing set (N = 60). The input to the CNN models comprised preprocessed MRA images, while the output was a tripartite classification label that identified the patient's diagnostic group. The performances of 3D CNN models were evaluated using a comprehensive set of metrics such as area under the curve (AUC) and accuracy. Gradient-weighted Class Activation Mapping (Grad-CAM) was used to visualize the CNN's decision-making process in MMD diagnosis by highlighting key areas. Finally, the diagnostic performances of the CNN models were compared with those of two experienced radiologists.FindingsDenseNet-121 exhibited superior discrimination capabilities, achieving a macro-average AUC of 0.977 (95% CI, 0.928–0.995) in the internal test sets and 0.880 (95% CI, 0.786–0.937) in the external validation sets, thus exhibiting comparable diagnostic capabilities to those of human radiologists. In the binary classification where ASD and NC were group together, with MMD as the separate group for targeted detection, DenseNet-121 achieved an accuracy of 0.967 (95% CI, 0.886–0.991). Additionally, the Grad-CAM results for the MMD, with areas of intense redness indicating critical areas identified by the model, reflected decision-making similar to human experts.InterpretationThis study highlights the efficacy of CNN model in the automated diagnosis of MMD on MRA images, easing the workload on radiologists and promising integration into clinical workflows.FundingNational Natural Science Foundation of China, Tianjin Science and Technology Project and Beijing Natural Science Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助Puan采纳,获得10
2秒前
科研通AI5应助正宗采纳,获得10
2秒前
3秒前
wst发布了新的文献求助10
3秒前
科研通AI5应助W镪Y采纳,获得10
6秒前
田様应助青芒果采纳,获得10
6秒前
勤劳怜寒完成签到,获得积分10
6秒前
及川徹发布了新的文献求助10
7秒前
7秒前
陆拾壹完成签到,获得积分10
8秒前
sssss应助锟斤拷烫烫烫采纳,获得10
9秒前
10秒前
10秒前
Alyssa发布了新的文献求助10
11秒前
11秒前
科研通AI5应助chikaoyu采纳,获得10
12秒前
leeshho发布了新的文献求助30
12秒前
14秒前
夏鹿发布了新的文献求助10
15秒前
嘉嘉琦发布了新的文献求助10
15秒前
罗燕完成签到,获得积分10
16秒前
sean完成签到,获得积分10
16秒前
可爱的函函应助wst采纳,获得10
16秒前
zzz发布了新的文献求助10
17秒前
khlkkfc发布了新的文献求助10
18秒前
务实完成签到 ,获得积分10
18秒前
LMY发布了新的文献求助10
19秒前
19秒前
Kim完成签到,获得积分10
19秒前
19秒前
夏鹿完成签到,获得积分10
20秒前
20秒前
猪哥哥完成签到,获得积分10
20秒前
科研通AI5应助Alyssa采纳,获得10
21秒前
21秒前
罗燕发布了新的文献求助20
21秒前
Puan发布了新的文献求助10
22秒前
22秒前
Jzhang发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670801
求助须知:如何正确求助?哪些是违规求助? 3227675
关于积分的说明 9776795
捐赠科研通 2937868
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735928