Kindlin-2 Phase Separation in Response to Flow Controls Vascular Stability

粘合连接 焦点粘着 蛋白质精氨酸甲基转移酶5 邻近连接试验 内皮 免疫沉淀 内皮干细胞 细胞生物学 化学 生物 细胞培养 体外 生物化学 细胞 甲基化 信号转导 钙粘蛋白 DNA 受体 遗传学 甲基转移酶
作者
Nina Ma,Fangfang Wu,Jiayu Liu,Ziru Wu,Lu Wang,Bochuan Li,Yuming Liu,Xue Dong,Junhao Hu,Xi Fang,Heng Zhang,Ding Ai,Jing Zhou,Xiaohong Wang
出处
期刊:Circulation Research [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1161/circresaha.124.324773
摘要

BACKGROUND: Atheroprotective shear stress preserves endothelial barrier function, while atheroprone shear stress enhances endothelial permeability. Yet, the underlying mechanisms through which distinct flow patterns regulate EC integrity remain to be clarified. This study aimed to investigate the involvement of Kindlin-2, a key component of focal adhesion and endothelial adherens junctions crucial for regulating endothelial cell (EC) integrity and vascular stability. METHODS: Mouse models of atherosclerosis in EC-specific Kindlin-2 knockout mice ( Kindlin-2 iΔEC ) were used to study the role of Kindlin-2 in atherogenesis. Pulsatile shear (2±4 dynes/cm 2 ) or oscillatory shear (0.5±4 dynes/cm 2 ) were applied to culture ECs. Live-cell imaging, fluorescence recovery after photobleaching assay, and optoDroplet assay were used to study the liquid-liquid phase separation (LLPS) of Kindlin-2. Co-immunoprecipitation, mutagenesis, proximity ligation assay, and transendothelial electrical resistance assay were used to explore the underlying mechanism of flow-regulated Kindlin-2 function. RESULTS: We found that Kindlin-2 localization is altered under different flow patterns. Kindlin-2 iΔEC mice showed heightened vascular permeability. Kindlin-2 iΔEC were bred onto ApoE −/− mice to generate Kindlin-2 iΔEC ; ApoE − /− mice, which displayed a significant increase in atherosclerosis lesions. In vitro data showed that in ECs, Kindlin-2 underwent LLPS, a critical process for proper focal adhesion assembly, maturation, and junction formation. Mass spectrometry analysis revealed that oscillatory shear increased arginine methylation of Kindlin-2, catalyzed by PRMT5 (protein arginine methyltransferase 5). Functionally, arginine hypermethylation inhibits Kindlin-2 LLPS, impairing focal adhesion assembly and junction maturation. Notably, we identified R290 of Kindlin-2 as a crucial residue for LLPS and a key site for arginine methylation. Finally, pharmacologically inhibiting arginine methylation reduces EC activation and plaque formation. CONCLUSIONS: Collectively, our study elucidates that mechanical force induces arginine methylation of Kindlin-2, thereby regulating vascular stability through its impact on Kindlin-2 LLPS. Targeting Kindlin-2 arginine methylation emerges as a promising hemodynamic-based strategy for treating vascular disorders and atherosclerosis. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02783300.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心蚂蚁发布了新的文献求助10
1秒前
2秒前
大可发布了新的文献求助10
2秒前
3秒前
3秒前
accpeted发布了新的文献求助10
4秒前
清新的夏烟完成签到 ,获得积分10
4秒前
夏禾完成签到,获得积分10
4秒前
科研通AI5应助dove采纳,获得10
4秒前
纪间发布了新的文献求助10
4秒前
研友_VZG7GZ应助小胜采纳,获得10
5秒前
望春风完成签到 ,获得积分10
5秒前
三个哈卡发布了新的文献求助10
6秒前
加菲丰丰应助CHINA_C13采纳,获得30
7秒前
爱看论文的小K完成签到 ,获得积分10
7秒前
我爱背单词完成签到,获得积分10
8秒前
10秒前
11秒前
biubiubiu发布了新的文献求助10
11秒前
细心蚂蚁完成签到,获得积分10
11秒前
orixero应助纪间采纳,获得10
12秒前
12秒前
坦率的依风完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
dove完成签到,获得积分10
17秒前
沙漠水发布了新的文献求助10
17秒前
17秒前
小胜完成签到 ,获得积分10
18秒前
桐桐应助来了来了采纳,获得10
19秒前
20秒前
jrc发布了新的文献求助10
20秒前
dove发布了新的文献求助10
21秒前
21秒前
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765