Universal Remaining Useful Life Prediction for OECTs under Different Aging Conditions

计算机科学
作者
Jie Xu,Kunshu Xiao,Xinhao Wu,Tongjie Pan,Cheng‐Geng Huang,Wei Huang,Yalan Ye
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015123-015123
标识
DOI:10.1088/1361-6501/ad8e76
摘要

Abstract It is significantly important to predict the remaining useful life (RUL) of organic electrochemical transistors (OECTs) for next-generation offshore electronics with stable and reliable performance. Most existing RUL prediction models are not suitable for OECTs RUL prediction tasks as they are based on the premise that components have the same aging conditions. In fact, aging conditions for different OECTs often exist in discrepancy, leading to performance degradation of RUL prediction models. Although a few methods have addressed this issue via transfer learning methods, they still suffer from the challenge in terms of an obvious discrepancy in aging data distribution caused by different aging conditions. To address this issue, we developed a novel universal RUL prediction model for OECTs, called adaptive transformer-based network, to reduce the obvious discrepancy among different aging data. First, a transformer-based feature extractor is used to capture the temporal and spatial aging features from some aging precursors. Then, a multi-scale feature alignment metric is adopted to align the aging features of OECTs by reducing discrepancy at different feature scales. Finally, an adversarial method is developed to obtain aging-condition-invariant features for further feature alignment. Extensive experiments are conducted on a real-world OECTs cycling stability aging test dataset. The average MSE of our method is reduced by two orders of magnitude compared to the one of the baseline, which indicates that our method achieves great progress for universal RUL prediction of OECTs under different aging conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共渡完成签到,获得积分10
刚刚
温柔若颜完成签到,获得积分10
1秒前
dacito完成签到,获得积分10
2秒前
魏无招完成签到 ,获得积分10
2秒前
超人也读博完成签到,获得积分10
2秒前
自信的冬日完成签到,获得积分10
3秒前
4秒前
Lawrence完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助标致谷菱采纳,获得10
5秒前
ossantu发布了新的文献求助10
6秒前
7秒前
一只蓉馍馍完成签到,获得积分10
7秒前
刘振扬发布了新的文献求助10
10秒前
ID27149完成签到,获得积分10
11秒前
12秒前
hzhang完成签到,获得积分10
12秒前
楼亦玉完成签到,获得积分10
13秒前
qiangxu完成签到,获得积分10
13秒前
若水完成签到,获得积分10
15秒前
JustAboutEnough完成签到,获得积分10
16秒前
张庭豪完成签到,获得积分10
16秒前
11贾完成签到,获得积分10
17秒前
luqong完成签到,获得积分10
17秒前
斯文泥猴桃完成签到,获得积分20
19秒前
小董不懂完成签到,获得积分10
20秒前
Arthur完成签到 ,获得积分10
20秒前
yzl科研爱我完成签到,获得积分10
20秒前
dannis完成签到,获得积分10
21秒前
体贴的青烟完成签到,获得积分10
21秒前
年轻千愁完成签到 ,获得积分10
22秒前
li发布了新的文献求助10
22秒前
田様应助didoo采纳,获得10
23秒前
Sean完成签到,获得积分10
23秒前
Tw完成签到,获得积分10
24秒前
爱岗敬业牛马人完成签到 ,获得积分10
24秒前
李龙龙发布了新的文献求助10
24秒前
顺利毕业完成签到 ,获得积分10
25秒前
叮叮车完成签到 ,获得积分10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Non-Crystalline Solids 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388697
求助须知:如何正确求助?哪些是违规求助? 3000920
关于积分的说明 8794343
捐赠科研通 2687154
什么是DOI,文献DOI怎么找? 1472003
科研通“疑难数据库(出版商)”最低求助积分说明 680720
邀请新用户注册赠送积分活动 673329