Harmonized system code classification using supervised contrastive learning with sentence BERT and multiple negative ranking loss

计算机科学 判决 排名(信息检索) 自然语言处理 人工智能 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Angga Wahyu Anggoro,Padraig Corcoran,Dennis De Widt,Yuhua Li
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
标识
DOI:10.1108/dta-01-2024-0052
摘要

Purpose International trade transactions, extracted from customs declarations, include several fields, among which the product description and the product category are the most important. The product category, also referred to as the Harmonised System Code (HS code), serves as a pivotal component for determining tax rates and administrative purposes. A predictive tool designed for product categories or HS codes becomes an important resource aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing misclassification arising from the ambiguities present in product nomenclature, thus mitigating the challenges associated with code interpretation. Moreover, deploying this tool would streamline the validation process for government officers dealing with extensive transactions, optimising their workload and enhancing tax revenue collection within this domain. Design/methodology/approach This study introduces a methodology focused on the generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT) framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following a contrastive learning paradigm. The procedure involves the construction of pairwise samples, including anchors and positive transactions. The proposed method is evaluated using two publicly available real-world datasets, specifically the India Import 2016 and United States Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling strategies, loss functions, and training parameters are explored within the experimental setup. The acquired representations serve as inputs for traditional machine learning algorithms employed in predicting the product categories within trade transactions. Findings Encoding trade transactions utilising SBERT with MNR loss facilitates the creation of enhanced embeddings that exhibit improved representational capacity. These fixed-length embeddings serve as adaptable inputs for training machine learning models, including support vector machine (SVM) and random forest, intended for downstream tasks of HS code classification. Empirical evidence supports the superior performance of our proposed approach compared to fine-tuning transformer-based models in the domain of trade transaction classification. Originality/value Our approach generates more representative sentence embeddings by creating the network architectures from scratch with the SBERT framework. Instead of exploiting a data augmentation method generally used in contrastive learning for measuring the similarity between the samples, we arranged positive samples following a supervised paradigm and determined loss through distance learning metrics. This process involves continuous updating of the Siamese or bi-encoder network to produce embeddings derived from commodity transactions. This strategy aims to ensure that similar concepts of transactions within the same class converge closer within the feature embedding space, thereby improving the performance of downstream tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
KYTYYDS发布了新的文献求助10
3秒前
HanluMa完成签到 ,获得积分10
3秒前
fzh完成签到,获得积分10
7秒前
Jenny完成签到,获得积分10
9秒前
伟立完成签到,获得积分10
9秒前
16秒前
17秒前
然12138完成签到 ,获得积分10
17秒前
香蕉觅云应助SnownS采纳,获得10
17秒前
川荣李奈完成签到 ,获得积分10
21秒前
xinbowey发布了新的文献求助10
21秒前
火星上向珊完成签到,获得积分10
24秒前
26秒前
柳条儿完成签到,获得积分10
26秒前
如意幻枫完成签到,获得积分10
30秒前
31秒前
31秒前
渔婆发布了新的文献求助10
32秒前
34秒前
风趣的泥猴桃完成签到 ,获得积分10
35秒前
35秒前
zgsjymysmyy发布了新的文献求助30
36秒前
fuchao完成签到,获得积分10
36秒前
牧谷发布了新的文献求助10
37秒前
好吃的火龙果完成签到 ,获得积分10
38秒前
天边发布了新的文献求助10
39秒前
东方越彬发布了新的文献求助10
40秒前
赘婿应助sunny采纳,获得10
40秒前
40秒前
40秒前
SnownS完成签到,获得积分10
41秒前
123123发布了新的文献求助10
45秒前
SnownS发布了新的文献求助10
46秒前
46秒前
46秒前
汉堡包应助天边采纳,获得10
48秒前
PengqianGuo完成签到,获得积分10
50秒前
echo发布了新的文献求助10
50秒前
bkagyin应助cancan采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566