Harmonized system code classification using supervised contrastive learning with sentence BERT and multiple negative ranking loss

计算机科学 判决 排名(信息检索) 自然语言处理 人工智能 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Angga Wahyu Anggoro,Padraig Corcoran,Dennis De Widt,Yuhua Li
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
标识
DOI:10.1108/dta-01-2024-0052
摘要

Purpose International trade transactions, extracted from customs declarations, include several fields, among which the product description and the product category are the most important. The product category, also referred to as the Harmonised System Code (HS code), serves as a pivotal component for determining tax rates and administrative purposes. A predictive tool designed for product categories or HS codes becomes an important resource aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing misclassification arising from the ambiguities present in product nomenclature, thus mitigating the challenges associated with code interpretation. Moreover, deploying this tool would streamline the validation process for government officers dealing with extensive transactions, optimising their workload and enhancing tax revenue collection within this domain. Design/methodology/approach This study introduces a methodology focused on the generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT) framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following a contrastive learning paradigm. The procedure involves the construction of pairwise samples, including anchors and positive transactions. The proposed method is evaluated using two publicly available real-world datasets, specifically the India Import 2016 and United States Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling strategies, loss functions, and training parameters are explored within the experimental setup. The acquired representations serve as inputs for traditional machine learning algorithms employed in predicting the product categories within trade transactions. Findings Encoding trade transactions utilising SBERT with MNR loss facilitates the creation of enhanced embeddings that exhibit improved representational capacity. These fixed-length embeddings serve as adaptable inputs for training machine learning models, including support vector machine (SVM) and random forest, intended for downstream tasks of HS code classification. Empirical evidence supports the superior performance of our proposed approach compared to fine-tuning transformer-based models in the domain of trade transaction classification. Originality/value Our approach generates more representative sentence embeddings by creating the network architectures from scratch with the SBERT framework. Instead of exploiting a data augmentation method generally used in contrastive learning for measuring the similarity between the samples, we arranged positive samples following a supervised paradigm and determined loss through distance learning metrics. This process involves continuous updating of the Siamese or bi-encoder network to produce embeddings derived from commodity transactions. This strategy aims to ensure that similar concepts of transactions within the same class converge closer within the feature embedding space, thereby improving the performance of downstream tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
JACK发布了新的文献求助10
1秒前
小宋同学不能怂完成签到 ,获得积分10
1秒前
Peng丶Young完成签到,获得积分10
1秒前
1秒前
学术新星完成签到,获得积分10
1秒前
传奇3应助欢欢采纳,获得10
2秒前
littlewhite发布了新的文献求助30
2秒前
木子发布了新的文献求助10
2秒前
2秒前
NiLou完成签到,获得积分10
2秒前
沉静的颦发布了新的文献求助10
3秒前
3秒前
yier完成签到,获得积分10
5秒前
5秒前
凉茗余香完成签到 ,获得积分10
6秒前
蜡笔小猪发布了新的文献求助10
6秒前
超级蘑菇关注了科研通微信公众号
6秒前
滴滴完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
执着的怜寒完成签到,获得积分10
8秒前
伍六七完成签到 ,获得积分10
8秒前
诸觅双完成签到 ,获得积分10
8秒前
无花果应助wbgwudi采纳,获得30
10秒前
zhangyuheng完成签到,获得积分10
10秒前
安静的安寒完成签到,获得积分10
10秒前
跳跃聪健完成签到,获得积分10
11秒前
Negan完成签到,获得积分10
11秒前
11秒前
a1oft完成签到,获得积分10
12秒前
细腻沅发布了新的文献求助10
12秒前
李爱国应助温柔的十三采纳,获得10
12秒前
12秒前
橘子海完成签到 ,获得积分10
12秒前
整齐尔蝶完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740