Harmonized system code classification using supervised contrastive learning with sentence BERT and multiple negative ranking loss

计算机科学 判决 排名(信息检索) 自然语言处理 人工智能 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Angga Wahyu Anggoro,Padraig Corcoran,Dennis De Widt,Yuhua Li
出处
期刊:Data technologies and applications [Emerald Publishing Limited]
标识
DOI:10.1108/dta-01-2024-0052
摘要

Purpose International trade transactions, extracted from customs declarations, include several fields, among which the product description and the product category are the most important. The product category, also referred to as the Harmonised System Code (HS code), serves as a pivotal component for determining tax rates and administrative purposes. A predictive tool designed for product categories or HS codes becomes an important resource aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing misclassification arising from the ambiguities present in product nomenclature, thus mitigating the challenges associated with code interpretation. Moreover, deploying this tool would streamline the validation process for government officers dealing with extensive transactions, optimising their workload and enhancing tax revenue collection within this domain. Design/methodology/approach This study introduces a methodology focused on the generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT) framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following a contrastive learning paradigm. The procedure involves the construction of pairwise samples, including anchors and positive transactions. The proposed method is evaluated using two publicly available real-world datasets, specifically the India Import 2016 and United States Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling strategies, loss functions, and training parameters are explored within the experimental setup. The acquired representations serve as inputs for traditional machine learning algorithms employed in predicting the product categories within trade transactions. Findings Encoding trade transactions utilising SBERT with MNR loss facilitates the creation of enhanced embeddings that exhibit improved representational capacity. These fixed-length embeddings serve as adaptable inputs for training machine learning models, including support vector machine (SVM) and random forest, intended for downstream tasks of HS code classification. Empirical evidence supports the superior performance of our proposed approach compared to fine-tuning transformer-based models in the domain of trade transaction classification. Originality/value Our approach generates more representative sentence embeddings by creating the network architectures from scratch with the SBERT framework. Instead of exploiting a data augmentation method generally used in contrastive learning for measuring the similarity between the samples, we arranged positive samples following a supervised paradigm and determined loss through distance learning metrics. This process involves continuous updating of the Siamese or bi-encoder network to produce embeddings derived from commodity transactions. This strategy aims to ensure that similar concepts of transactions within the same class converge closer within the feature embedding space, thereby improving the performance of downstream tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqkkk发布了新的文献求助10
2秒前
2秒前
王梽旭完成签到,获得积分20
2秒前
明天一定吃早饭完成签到,获得积分10
3秒前
醉爱星星完成签到,获得积分10
3秒前
xubee完成签到,获得积分10
3秒前
3秒前
友好的天奇完成签到 ,获得积分10
3秒前
ljjxd完成签到,获得积分10
3秒前
秀丽奎完成签到 ,获得积分10
3秒前
cold寒完成签到,获得积分10
4秒前
4秒前
汪哈七完成签到,获得积分10
5秒前
5秒前
飘逸之玉完成签到,获得积分10
5秒前
雾昂发布了新的文献求助10
7秒前
CipherSage应助不爱吃饭采纳,获得10
7秒前
汪哈七发布了新的文献求助10
7秒前
丹丹发布了新的文献求助10
7秒前
less完成签到,获得积分10
8秒前
wanci应助月之暗面采纳,获得10
8秒前
zhizhi完成签到,获得积分10
9秒前
wqkkk完成签到,获得积分10
9秒前
Feng发布了新的文献求助20
10秒前
10秒前
10秒前
情怀应助123采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
静心安逸完成签到,获得积分10
10秒前
李健的粉丝团团长应助hh采纳,获得10
11秒前
隐形曼青应助滴滴滴采纳,获得10
11秒前
任性的蝴蝶完成签到,获得积分10
11秒前
han发布了新的文献求助10
11秒前
卷卷完成签到 ,获得积分10
12秒前
12秒前
12秒前
ethen完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743