Harmonized system code classification using supervised contrastive learning with sentence BERT and multiple negative ranking loss

计算机科学 判决 排名(信息检索) 自然语言处理 人工智能 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Angga Wahyu Anggoro,Padraig Corcoran,Dennis De Widt,Yuhua Li
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
标识
DOI:10.1108/dta-01-2024-0052
摘要

Purpose International trade transactions, extracted from customs declarations, include several fields, among which the product description and the product category are the most important. The product category, also referred to as the Harmonised System Code (HS code), serves as a pivotal component for determining tax rates and administrative purposes. A predictive tool designed for product categories or HS codes becomes an important resource aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing misclassification arising from the ambiguities present in product nomenclature, thus mitigating the challenges associated with code interpretation. Moreover, deploying this tool would streamline the validation process for government officers dealing with extensive transactions, optimising their workload and enhancing tax revenue collection within this domain. Design/methodology/approach This study introduces a methodology focused on the generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT) framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following a contrastive learning paradigm. The procedure involves the construction of pairwise samples, including anchors and positive transactions. The proposed method is evaluated using two publicly available real-world datasets, specifically the India Import 2016 and United States Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling strategies, loss functions, and training parameters are explored within the experimental setup. The acquired representations serve as inputs for traditional machine learning algorithms employed in predicting the product categories within trade transactions. Findings Encoding trade transactions utilising SBERT with MNR loss facilitates the creation of enhanced embeddings that exhibit improved representational capacity. These fixed-length embeddings serve as adaptable inputs for training machine learning models, including support vector machine (SVM) and random forest, intended for downstream tasks of HS code classification. Empirical evidence supports the superior performance of our proposed approach compared to fine-tuning transformer-based models in the domain of trade transaction classification. Originality/value Our approach generates more representative sentence embeddings by creating the network architectures from scratch with the SBERT framework. Instead of exploiting a data augmentation method generally used in contrastive learning for measuring the similarity between the samples, we arranged positive samples following a supervised paradigm and determined loss through distance learning metrics. This process involves continuous updating of the Siamese or bi-encoder network to produce embeddings derived from commodity transactions. This strategy aims to ensure that similar concepts of transactions within the same class converge closer within the feature embedding space, thereby improving the performance of downstream tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的雅霜完成签到,获得积分10
刚刚
陈的住气发布了新的文献求助10
刚刚
1秒前
1秒前
陈的住气发布了新的文献求助10
1秒前
陈的住气发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
zhaopeiqi完成签到,获得积分20
3秒前
陈的住气发布了新的文献求助10
3秒前
3秒前
陈的住气发布了新的文献求助10
3秒前
陈的住气发布了新的文献求助10
3秒前
陈的住气发布了新的文献求助10
4秒前
陈的住气发布了新的文献求助10
4秒前
4秒前
嘉嘉sone发布了新的文献求助10
4秒前
陈的住气发布了新的文献求助10
5秒前
陈的住气发布了新的文献求助10
5秒前
陈的住气发布了新的文献求助10
5秒前
陈的住气发布了新的文献求助10
5秒前
陈的住气发布了新的文献求助10
5秒前
陈的住气发布了新的文献求助10
5秒前
XHR33发布了新的文献求助10
6秒前
陈的住气发布了新的文献求助10
6秒前
柠檬发布了新的文献求助10
7秒前
hhj完成签到,获得积分10
8秒前
Lori完成签到,获得积分10
9秒前
归一然完成签到 ,获得积分10
9秒前
DJDJDDDJ发布了新的文献求助20
10秒前
10秒前
不懈奋进应助核桃采纳,获得30
10秒前
酷波er应助核桃采纳,获得10
10秒前
豆儿嘚小豆儿应助莫123采纳,获得10
11秒前
科研通AI6.1应助aa采纳,获得10
11秒前
orixero应助核桃采纳,获得10
11秒前
我是老大应助核桃采纳,获得30
11秒前
SciGPT应助吃饭睡觉写论文采纳,获得10
11秒前
在水一方应助核桃采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879