The Impact of Autumn Snowfall on Vegetation Indices and Autumn Phenology Estimation

物候学 环境科学 归一化差异植被指数 植被(病理学) 自然地理学 增强植被指数 气候变化 气候学 大气科学 植被指数 地理 生态学 气象学 地质学 医学 病理 生物
作者
Yao Tang,Jin Chen,Jingyi Xu,Jiahui Xu,Jingwen Ni,Zhaojun Zheng,Bailang Yu,Jianping Wu,Yan Huang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (24): 4783-4783
标识
DOI:10.3390/rs16244783
摘要

Monitoring autumn vegetation dynamics in alpine regions is crucial for managing local livestock, understanding regional productivity, and assessing the responses of alpine regions to climate change. However, remote sensing-based vegetation monitoring is significantly affected by snowfall. The impact of autumn snowfall, particularly when vegetation has not fully entered dormancy, has been largely overlooked. To demonstrate the uncertainties caused by autumn snowfall in remote sensing-based vegetation monitoring, we analyzed 16 short-term snowfall events in the Qinghai–Tibet Plateau. We employed a synthetic difference-in-differences estimation framework and conducted simulated experiments to isolate the impact of snowfall from other factors, revealing its effects on vegetation indices (VIs) and autumn phenology estimation. Our findings indicate that autumn snowfall notably affects commonly used VIs and their associated phenology estimates. Modified VIs (i.e., Normalized Difference Infrared Index (NDII), Phenology Index (PI), Normalized Difference Phenology Index (NDPI), and Normalized Difference Greenness Index (NDGI)) revealed greater resilience to snowfall compared to conventional VIs (i.e., Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) in phenology estimation. Areas with remaining green vegetation in autumn showed more pronounced numerical changes in VIs due to snowfall. Furthermore, the impact of autumn snowfall closely correlated with underlying vegetation types. Forested areas experienced less impact from snowfall compared to grass- and shrub-dominated regions. Earlier snowfall onset and increased snowfall frequency further exacerbated deviations in estimated phenology caused by snowfall. This study highlights the significant impact of autumn snowfall on remote sensing-based vegetation monitoring and provides a scientific basis for accurate vegetation studies in high-altitude regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助小潘采纳,获得10
刚刚
ding应助hlt采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
前前前世完成签到,获得积分10
2秒前
3秒前
弼马温关注了科研通微信公众号
3秒前
可爱迪发布了新的文献求助10
3秒前
健壮的化蛹应助顺心的骁采纳,获得10
4秒前
小满发布了新的文献求助10
4秒前
ss完成签到 ,获得积分10
4秒前
tt完成签到,获得积分10
5秒前
5秒前
5秒前
fish1998完成签到,获得积分10
5秒前
顾矜应助优雅尔芙采纳,获得10
5秒前
Mr祥发布了新的文献求助10
6秒前
爬不起来发布了新的文献求助10
6秒前
6秒前
7秒前
CCCC完成签到,获得积分20
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
meng发布了新的文献求助10
9秒前
英姑应助hlt采纳,获得10
9秒前
科研牛马人完成签到,获得积分10
9秒前
fish1998发布了新的文献求助10
10秒前
10秒前
Sunny发布了新的文献求助10
10秒前
10秒前
11发布了新的文献求助10
10秒前
lienafeihu完成签到,获得积分10
11秒前
小二郎应助曾经的芷波采纳,获得10
11秒前
鲨鱼辣椒发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910