Hybrid Drought Forecasting Framework for Water‐Scarce Regions Based on Support Vector Machine and Precipitation Index

水资源 环境科学 干旱 降水 自回归模型 缺水 自相关 偏自我相关函数 索引(排版) 支持向量机 气候学 时间序列 自回归积分移动平均 计算机科学 气象学 统计 机器学习 数学 地理 生态学 地质学 万维网 生物
作者
Abdullah A. Alsumaiei
出处
期刊:Hydrological Processes [Wiley]
卷期号:38 (12)
标识
DOI:10.1002/hyp.70031
摘要

ABSTRACT Drought is a natural event that slowly deteriorates water reserves. This study aims to develop a machine learning–based computational framework for monitoring drought status in water‐scarce regions. The proposed framework integrates the precipitation index (PI) with support vector machine models to forecast drought occurrences based on an autoregressive modelling scheme. Due to the suitability of the PI for drought analysis in arid climates, the developed hybrid model is appropriate in regions with limited rainfall. This study used a historical precipitation dataset from 1958 to 2020 at the Kuwait International Airport, Kuwait City. The study area is characterised by scarce rainfall and is vulnerable to severe water shortages owing to limited water resources. Initially, historical PI time‐series datasets were examined for stationarity to validate the utility of the autoregressive model. The autocorrelation function test was significantly associated with the PI time series at the 12‐ and 24‐month drought‐monitoring scales. Predictive drought forecasting models were constructed to predict drought occurrences up to 3 months in advance. Statistical evaluation metrics were used to assess model performance for the 12‐ and 24‐month drought‐monitoring scales. The results showed a strong association between the observed and predicted drought events, with coefficients of determination ( R 2 ) ranging between 0.865 and 0.925 for the 12‐ and 24‐month drought‐monitoring scales. The proposed computational framework aims to provide water managers in arid and water‐scarce regions with efficient and reliable drought‐monitoring tools to assist in preparing appropriate water management plans. This study provides guidance for improving water resource resilience under water shortage scenarios in the study area and other climatic regions by applying suitable drought indices in conjunction with robust data‐driven models. The results provide a baseline for water resource policymakers worldwide to establish sustainable water conservation strategies and provide crucial insights for drought disaster preparation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
Zz发布了新的文献求助10
3秒前
心理学小五应助fifteen采纳,获得10
3秒前
不要辣椒发布了新的文献求助10
4秒前
ZZ发布了新的文献求助10
5秒前
cmh发布了新的文献求助10
5秒前
苹果飞绿发布了新的文献求助10
5秒前
SYLH应助健忘捕采纳,获得20
6秒前
Pu Chunyi完成签到,获得积分10
6秒前
SYLH应助niuma采纳,获得20
7秒前
优雅夜雪发布了新的文献求助30
9秒前
9秒前
11秒前
Phil完成签到 ,获得积分10
12秒前
田様应助等你下课采纳,获得10
13秒前
闪闪的梦山完成签到,获得积分10
13秒前
14秒前
syan完成签到,获得积分10
14秒前
15秒前
天天快乐应助等待的谷波采纳,获得10
15秒前
安详以晴发布了新的文献求助10
15秒前
15秒前
dou驳回了小二郎应助
15秒前
xx完成签到,获得积分10
16秒前
zu发布了新的文献求助10
16秒前
16秒前
科研通AI5应助半柚采纳,获得10
17秒前
17秒前
积极幻桃完成签到,获得积分10
19秒前
xiaozhao完成签到,获得积分10
20秒前
水印月完成签到,获得积分20
20秒前
20秒前
学分发布了新的文献求助10
21秒前
22秒前
清新的访冬完成签到,获得积分20
22秒前
Hexagram发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232