A novel method for power transformer fault diagnosis considering imbalanced data samples

变压器 可靠性工程 计算机科学 材料科学 工程类 电气工程 电压
作者
Jun Chen,Yong Wang,Lingming Kong,Yilong Chen,Ming Chen,Qian Cai,Gehao Sheng
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fenrg.2024.1500548
摘要

Introduction Machine learning-based power transformer fault diagnosis methods often grapple with the challenge of imbalanced fault case distributions across different categories, potentially degrading diagnostic accuracy. To address this issue and enhance the accuracy and operational efficiency of power transformer fault diagnosis models, this paper presents a novel fault diagnosis model that integrates Neighborhood Component Analysis (NCA) and k-Nearest Neighbor (KNN) learning, with the incorporation of correction factors. Methods The methodology begins by introducing a correction factor into the objective function of the NCA algorithm to reduce the impact of sample imbalance on model training. We derive a sample parameter correlation quantization matrix from oil chromatography fault data using association rules, which serves as the initial value for the NCA algorithm’s training metric matrix. The metric matrix obtained from training is then applied to perform a mapping transformation on the input data for the KNN classifier, thereby reducing the distance between similar samples and enhancing KNN classification performance. Hyperparameter tuning is achieved through the Bayesian optimization algorithm to identify the model parameter set that maximizes test set accuracy. Results Analysis of the transformer fault case library reveals that the model proposed in this paper reduces diagnostic time by nearly half compared to traditional machine learning diagnosis models. Additionally, the accuracy for minority sample classes is improved by at least 15% compared to other models. Discussion The integration of NCA and KNN with correction factors not only mitigates the effects of sample imbalance but also significantly enhances the operational efficiency and diagnostic accuracy of power transformer fault diagnosis. The proposed model’s performance improvements highlight the potential of this approach for practical applications in the field of power transformer maintenance and diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助ff采纳,获得10
刚刚
1秒前
2秒前
李扬完成签到,获得积分10
5秒前
FTIPRI发布了新的文献求助10
5秒前
不吃香菜完成签到,获得积分10
6秒前
朴素小霜发布了新的文献求助10
7秒前
捞得话完成签到,获得积分10
7秒前
lalala发布了新的文献求助10
8秒前
欣欣然完成签到,获得积分20
8秒前
桐桐应助星空下的皮先生采纳,获得10
8秒前
9秒前
唾沫星子发布了新的文献求助10
10秒前
赘婿应助meng采纳,获得10
10秒前
JL完成签到,获得积分10
10秒前
sun完成签到,获得积分10
11秒前
Zcccjy完成签到 ,获得积分10
14秒前
14秒前
hui发布了新的文献求助10
15秒前
ZJJ完成签到,获得积分10
16秒前
19秒前
共享精神应助Mississippiecho采纳,获得10
19秒前
lalala发布了新的文献求助10
21秒前
22秒前
Polymer72应助葵葵采纳,获得10
22秒前
多晒太阳发布了新的文献求助10
23秒前
25秒前
ciyunshen完成签到,获得积分10
26秒前
找回自己完成签到,获得积分10
28秒前
29秒前
jiamei发布了新的文献求助10
29秒前
典雅的不悔完成签到 ,获得积分10
33秒前
jxyx完成签到 ,获得积分10
33秒前
33秒前
34秒前
34秒前
lalala发布了新的文献求助10
34秒前
Lucas应助tomato采纳,获得10
36秒前
36秒前
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340313
求助须知:如何正确求助?哪些是违规求助? 2968359
关于积分的说明 8633331
捐赠科研通 2647907
什么是DOI,文献DOI怎么找? 1449881
科研通“疑难数据库(出版商)”最低求助积分说明 671549
邀请新用户注册赠送积分活动 660594