已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel method for power transformer fault diagnosis considering imbalanced data samples

变压器 可靠性工程 计算机科学 材料科学 工程类 电气工程 电压
作者
Jun Chen,Yong Wang,Lingming Kong,Yilong Chen,Ming Chen,Qian Cai,Gehao Sheng
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fenrg.2024.1500548
摘要

Introduction Machine learning-based power transformer fault diagnosis methods often grapple with the challenge of imbalanced fault case distributions across different categories, potentially degrading diagnostic accuracy. To address this issue and enhance the accuracy and operational efficiency of power transformer fault diagnosis models, this paper presents a novel fault diagnosis model that integrates Neighborhood Component Analysis (NCA) and k-Nearest Neighbor (KNN) learning, with the incorporation of correction factors. Methods The methodology begins by introducing a correction factor into the objective function of the NCA algorithm to reduce the impact of sample imbalance on model training. We derive a sample parameter correlation quantization matrix from oil chromatography fault data using association rules, which serves as the initial value for the NCA algorithm’s training metric matrix. The metric matrix obtained from training is then applied to perform a mapping transformation on the input data for the KNN classifier, thereby reducing the distance between similar samples and enhancing KNN classification performance. Hyperparameter tuning is achieved through the Bayesian optimization algorithm to identify the model parameter set that maximizes test set accuracy. Results Analysis of the transformer fault case library reveals that the model proposed in this paper reduces diagnostic time by nearly half compared to traditional machine learning diagnosis models. Additionally, the accuracy for minority sample classes is improved by at least 15% compared to other models. Discussion The integration of NCA and KNN with correction factors not only mitigates the effects of sample imbalance but also significantly enhances the operational efficiency and diagnostic accuracy of power transformer fault diagnosis. The proposed model’s performance improvements highlight the potential of this approach for practical applications in the field of power transformer maintenance and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
凉白开发布了新的文献求助10
4秒前
165发布了新的文献求助10
7秒前
10秒前
恋如雪止完成签到 ,获得积分10
11秒前
千里遇青完成签到,获得积分10
14秒前
李健的粉丝团团长应助165采纳,获得10
15秒前
15秒前
oyfff完成签到 ,获得积分10
19秒前
老实的季节完成签到 ,获得积分10
20秒前
ding应助solar@2030采纳,获得10
20秒前
蓝天应助Boniu_wang采纳,获得30
21秒前
Jacquielin完成签到,获得积分10
22秒前
26秒前
秋_完成签到 ,获得积分10
26秒前
solar@2030发布了新的文献求助10
32秒前
秋_关注了科研通微信公众号
32秒前
新晋学术小生完成签到 ,获得积分10
35秒前
37秒前
41秒前
科研通AI6应助xy采纳,获得10
42秒前
STPI发布了新的文献求助10
42秒前
专注的芷完成签到 ,获得积分10
42秒前
大熊发布了新的文献求助10
46秒前
文章快快来完成签到,获得积分10
48秒前
李健应助李彦采纳,获得10
48秒前
安静的晓亦完成签到 ,获得积分10
48秒前
hovumath完成签到,获得积分10
49秒前
49秒前
oryWang发布了新的文献求助10
54秒前
苻谷丝完成签到,获得积分10
55秒前
西瓜完成签到 ,获得积分10
55秒前
55秒前
Boniu_wang完成签到,获得积分10
55秒前
英姑应助YixiaoWang采纳,获得10
56秒前
happy完成签到 ,获得积分10
57秒前
tao完成签到,获得积分10
57秒前
乐乐应助吴豁采纳,获得10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561029
求助须知:如何正确求助?哪些是违规求助? 4646217
关于积分的说明 14677985
捐赠科研通 4587425
什么是DOI,文献DOI怎么找? 2517043
邀请新用户注册赠送积分活动 1490404
关于科研通互助平台的介绍 1461216