A novel method for power transformer fault diagnosis considering imbalanced data samples

变压器 可靠性工程 计算机科学 材料科学 工程类 电气工程 电压
作者
Jun Chen,Yong Wang,Lingming Kong,Yilong Chen,Ming Chen,Qian Cai,Gehao Sheng
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fenrg.2024.1500548
摘要

Introduction Machine learning-based power transformer fault diagnosis methods often grapple with the challenge of imbalanced fault case distributions across different categories, potentially degrading diagnostic accuracy. To address this issue and enhance the accuracy and operational efficiency of power transformer fault diagnosis models, this paper presents a novel fault diagnosis model that integrates Neighborhood Component Analysis (NCA) and k-Nearest Neighbor (KNN) learning, with the incorporation of correction factors. Methods The methodology begins by introducing a correction factor into the objective function of the NCA algorithm to reduce the impact of sample imbalance on model training. We derive a sample parameter correlation quantization matrix from oil chromatography fault data using association rules, which serves as the initial value for the NCA algorithm’s training metric matrix. The metric matrix obtained from training is then applied to perform a mapping transformation on the input data for the KNN classifier, thereby reducing the distance between similar samples and enhancing KNN classification performance. Hyperparameter tuning is achieved through the Bayesian optimization algorithm to identify the model parameter set that maximizes test set accuracy. Results Analysis of the transformer fault case library reveals that the model proposed in this paper reduces diagnostic time by nearly half compared to traditional machine learning diagnosis models. Additionally, the accuracy for minority sample classes is improved by at least 15% compared to other models. Discussion The integration of NCA and KNN with correction factors not only mitigates the effects of sample imbalance but also significantly enhances the operational efficiency and diagnostic accuracy of power transformer fault diagnosis. The proposed model’s performance improvements highlight the potential of this approach for practical applications in the field of power transformer maintenance and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monster0101完成签到 ,获得积分10
刚刚
木野狐发布了新的文献求助10
2秒前
毛毛完成签到,获得积分10
2秒前
4秒前
Hello应助美好斓采纳,获得30
5秒前
小二郎应助茴茴采纳,获得10
5秒前
Jnest完成签到,获得积分10
6秒前
6秒前
01231009yrjz发布了新的文献求助10
8秒前
weixin112233完成签到,获得积分10
8秒前
8秒前
lili完成签到,获得积分10
9秒前
slj完成签到,获得积分10
9秒前
赘婿应助lvshiwen采纳,获得30
11秒前
完美世界应助健壮的蘑菇采纳,获得10
12秒前
852应助木野狐采纳,获得10
12秒前
12秒前
12秒前
13秒前
彭于晏应助AJian采纳,获得10
13秒前
机灵柚子应助积极的黑猫采纳,获得20
15秒前
美好斓发布了新的文献求助30
16秒前
亦hcy完成签到,获得积分10
18秒前
1111发布了新的文献求助10
19秒前
21秒前
24秒前
Atsuen发布了新的文献求助10
24秒前
25秒前
25秒前
早睡关注了科研通微信公众号
25秒前
iNk应助梦隐雾采纳,获得20
25秒前
26秒前
青葙子完成签到,获得积分20
27秒前
YEM发布了新的文献求助10
29秒前
les3完成签到,获得积分10
30秒前
茴茴发布了新的文献求助10
31秒前
善学以致用应助甲乙丙丁采纳,获得10
32秒前
CABBAGE完成签到,获得积分10
32秒前
32秒前
阳佟半仙发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432