A novel method for power transformer fault diagnosis considering imbalanced data samples

变压器 可靠性工程 计算机科学 材料科学 工程类 电气工程 电压
作者
Jun Chen,Yong Wang,Lingming Kong,Yilong Chen,Ming Chen,Qian Cai,Gehao Sheng
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fenrg.2024.1500548
摘要

Introduction Machine learning-based power transformer fault diagnosis methods often grapple with the challenge of imbalanced fault case distributions across different categories, potentially degrading diagnostic accuracy. To address this issue and enhance the accuracy and operational efficiency of power transformer fault diagnosis models, this paper presents a novel fault diagnosis model that integrates Neighborhood Component Analysis (NCA) and k-Nearest Neighbor (KNN) learning, with the incorporation of correction factors. Methods The methodology begins by introducing a correction factor into the objective function of the NCA algorithm to reduce the impact of sample imbalance on model training. We derive a sample parameter correlation quantization matrix from oil chromatography fault data using association rules, which serves as the initial value for the NCA algorithm’s training metric matrix. The metric matrix obtained from training is then applied to perform a mapping transformation on the input data for the KNN classifier, thereby reducing the distance between similar samples and enhancing KNN classification performance. Hyperparameter tuning is achieved through the Bayesian optimization algorithm to identify the model parameter set that maximizes test set accuracy. Results Analysis of the transformer fault case library reveals that the model proposed in this paper reduces diagnostic time by nearly half compared to traditional machine learning diagnosis models. Additionally, the accuracy for minority sample classes is improved by at least 15% compared to other models. Discussion The integration of NCA and KNN with correction factors not only mitigates the effects of sample imbalance but also significantly enhances the operational efficiency and diagnostic accuracy of power transformer fault diagnosis. The proposed model’s performance improvements highlight the potential of this approach for practical applications in the field of power transformer maintenance and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助星河在眼里采纳,获得10
1秒前
爆米花应助椰子壳采纳,获得10
2秒前
英姑应助婷婷的大宝剑采纳,获得10
3秒前
量子星尘发布了新的文献求助150
4秒前
梁小鑫完成签到,获得积分10
5秒前
xiaobei完成签到,获得积分10
5秒前
Aipoi1完成签到,获得积分10
5秒前
7秒前
村上春树的摩的完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
jt完成签到 ,获得积分10
9秒前
爆米花应助小新没了蜡笔采纳,获得10
10秒前
10秒前
开着飞机骑拖拉机完成签到,获得积分10
10秒前
无花果应助yorkson境采纳,获得10
11秒前
武广敏发布了新的文献求助10
13秒前
jy发布了新的文献求助10
13秒前
Hmzek完成签到,获得积分10
13秒前
steven发布了新的文献求助30
15秒前
heniancheng完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助150
15秒前
15秒前
柏林寒冬应助威威采纳,获得10
17秒前
17秒前
17秒前
18秒前
珊明治发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
沉静大有发布了新的文献求助10
19秒前
Aipoi完成签到,获得积分10
20秒前
20秒前
20秒前
科科完成签到 ,获得积分10
21秒前
zz完成签到,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5129652
求助须知:如何正确求助?哪些是违规求助? 4332127
关于积分的说明 13496597
捐赠科研通 4168585
什么是DOI,文献DOI怎么找? 2285073
邀请新用户注册赠送积分活动 1285975
关于科研通互助平台的介绍 1226945