亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel method for power transformer fault diagnosis considering imbalanced data samples

变压器 可靠性工程 计算机科学 材料科学 工程类 电气工程 电压
作者
Jun Chen,Yong Wang,Lingming Kong,Yilong Chen,Ming Chen,Qian Cai,Gehao Sheng
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fenrg.2024.1500548
摘要

Introduction Machine learning-based power transformer fault diagnosis methods often grapple with the challenge of imbalanced fault case distributions across different categories, potentially degrading diagnostic accuracy. To address this issue and enhance the accuracy and operational efficiency of power transformer fault diagnosis models, this paper presents a novel fault diagnosis model that integrates Neighborhood Component Analysis (NCA) and k-Nearest Neighbor (KNN) learning, with the incorporation of correction factors. Methods The methodology begins by introducing a correction factor into the objective function of the NCA algorithm to reduce the impact of sample imbalance on model training. We derive a sample parameter correlation quantization matrix from oil chromatography fault data using association rules, which serves as the initial value for the NCA algorithm’s training metric matrix. The metric matrix obtained from training is then applied to perform a mapping transformation on the input data for the KNN classifier, thereby reducing the distance between similar samples and enhancing KNN classification performance. Hyperparameter tuning is achieved through the Bayesian optimization algorithm to identify the model parameter set that maximizes test set accuracy. Results Analysis of the transformer fault case library reveals that the model proposed in this paper reduces diagnostic time by nearly half compared to traditional machine learning diagnosis models. Additionally, the accuracy for minority sample classes is improved by at least 15% compared to other models. Discussion The integration of NCA and KNN with correction factors not only mitigates the effects of sample imbalance but also significantly enhances the operational efficiency and diagnostic accuracy of power transformer fault diagnosis. The proposed model’s performance improvements highlight the potential of this approach for practical applications in the field of power transformer maintenance and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哇了哇发布了新的文献求助10
7秒前
dlfg发布了新的文献求助10
7秒前
7秒前
舒适砖家发布了新的文献求助10
11秒前
22秒前
24秒前
冷风寒清完成签到 ,获得积分10
29秒前
冷风寒清关注了科研通微信公众号
35秒前
鲜橙完成签到 ,获得积分10
37秒前
37秒前
40秒前
廉6666发布了新的文献求助10
44秒前
bare完成签到 ,获得积分10
44秒前
杨怀托发布了新的文献求助10
44秒前
lin完成签到,获得积分10
45秒前
ding应助廉6666采纳,获得10
48秒前
53秒前
华仔应助decade采纳,获得30
1分钟前
1分钟前
清爽冬莲完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
售后延长发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
晴雨天完成签到 ,获得积分10
1分钟前
1分钟前
Liii完成签到 ,获得积分10
1分钟前
jlw完成签到,获得积分10
1分钟前
1分钟前
陈俐俐完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
manjusaka发布了新的文献求助10
1分钟前
Hello应助李博士采纳,获得10
1分钟前
lilian完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988