亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cobalt Single‐Atom Intercalation in Molybdenum Disulfide Enhances Piezocatalytic and Enzyodynamic Activities for Advanced Cancer Therapeutics

材料科学 空位缺陷 纳米技术 兴奋剂 二硫化钼 插层(化学) 活性氧 化学 光电子学 无机化学 生物化学 结晶学 冶金
作者
Hongwei Bai,Sujun Ding,Yanfei Dai,Jiefu Liu,Huangjing Chen,Wei Feng,Dehong Yu,Yu Chen,Xuejun Ni
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202415485
摘要

Abstract Piezoelectric semiconductor nanomaterials have attracted considerable interest in piezocatalytic tumor treatment. However, piezocatalytic therapy encounters obstacles such as suboptimal piezoelectric responses, rapid electron‐hole recombination, inefficient energy harvesting, and the complexities of the tumor microenvironment. In this study, sulfur vacancy‐engineered cobalt (Co) single‐atom doped molybdenum disulfide (SA‐Co@MoS 2 ) nanoflowers are strategically designed, which exhibit enhanced piezoelectric effects. Specifically, the introduction of Co single atom not only induces lattice distortion and out‐of‐plane polarization but also leads to the formation of numerous sulfur vacancies. These changes collectively narrow the intrinsic bandgap of the material, facilitating effective separation and migration of charge carriers, and enabling efficient production of reactive oxygen species under ultrasound stimulation. Additionally, the SA‐Co@MoS 2 nanoflowers demonstrate improved enzymatic activity and exhibit glutathione depletion capabilities attributed to the mixed valence states of Co, intensifying oxidative stress in tumor cells, and leading to cell cycle arrest and apoptosis, while the inactivation of glutathione peroxidase 4 induces ferroptosis. Both in vitro and in vivo results indicate that SA‐Co@MoS 2 nanoflowers can significantly eliminate tumor cells. This study offers valuable insights into the exploration of single‐atom doping‐enhanced piezoelectric sonosensitizers for cancer treatment, potentially paving the way for advancements in the field of piezocatalytic synergistic enzyodynamic therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
丝垚完成签到 ,获得积分10
9秒前
11秒前
20秒前
21秒前
23秒前
32秒前
36秒前
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
心随以动完成签到 ,获得积分10
37秒前
Gigi发布了新的文献求助10
38秒前
39秒前
41秒前
冷艳的立果应助Gigi采纳,获得10
45秒前
修辛完成签到 ,获得积分10
45秒前
1分钟前
1分钟前
1分钟前
圆滚滚的栗子君完成签到 ,获得积分10
1分钟前
bkagyin应助ling采纳,获得10
1分钟前
善良的冷梅完成签到,获得积分10
1分钟前
1分钟前
马騳骉完成签到,获得积分10
1分钟前
2分钟前
2分钟前
zhaozi发布了新的文献求助10
2分钟前
zhaozi完成签到,获得积分10
2分钟前
雾蓝完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Gzb发布了新的文献求助10
3分钟前
情怀应助Gzb采纳,获得10
3分钟前
xyawl425完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298