Robust model averaging approach by Mallows-type criterion

估计员 离群值 选型 数学 加权 稳健性(进化) 稳健回归 稳健统计 M-估计量 一致性(知识库) 计算机科学 数学优化 应用数学 统计 医学 基因 放射科 生物化学 化学 几何学
作者
Miaomiao Wang,Kang You,Lixing Zhu,Guohua Zou
出处
期刊:Biometrics [Oxford University Press]
卷期号:80 (4)
标识
DOI:10.1093/biomtc/ujae128
摘要

Model averaging is an important tool for treating uncertainty from model selection process and fusing information from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final prediction error based on the GM-type loss function. So, we can still achieve a trustworthy result even if the dataset is contaminated by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further, we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare them with other commonly used model selection and averaging methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的路人完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
2秒前
彭于晏应助吱吱采纳,获得10
3秒前
清秀颜演发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
hujialiang完成签到,获得积分10
4秒前
山林完成签到 ,获得积分10
4秒前
华仔应助珏珏_不是玉玉采纳,获得10
5秒前
5秒前
万能图书馆应助camellia采纳,获得10
5秒前
Shark发布了新的文献求助30
5秒前
多久上课发布了新的文献求助10
6秒前
6秒前
zyf完成签到,获得积分10
6秒前
小马甲应助DUDU采纳,获得10
7秒前
hd发布了新的文献求助10
7秒前
小陈发布了新的文献求助10
7秒前
8秒前
8秒前
落后项链发布了新的文献求助10
9秒前
9秒前
六郎发布了新的文献求助10
10秒前
脑洞疼应助navvv采纳,获得50
10秒前
三石发布了新的文献求助10
10秒前
楚楚爸完成签到,获得积分10
10秒前
10秒前
10秒前
天风完成签到,获得积分20
11秒前
zhaoyang发布了新的文献求助10
11秒前
12秒前
小二郎应助多久上课采纳,获得10
12秒前
13秒前
奥特曼发布了新的文献求助10
13秒前
冰冰子完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096