Robust model averaging approach by Mallows-type criterion

估计员 离群值 选型 数学 加权 稳健性(进化) 稳健回归 稳健统计 M-估计量 一致性(知识库) 计算机科学 数学优化 应用数学 统计 医学 基因 放射科 生物化学 化学 几何学
作者
Miaomiao Wang,Kang You,Lixing Zhu,Guohua Zou
出处
期刊:Biometrics [Wiley]
卷期号:80 (4)
标识
DOI:10.1093/biomtc/ujae128
摘要

Model averaging is an important tool for treating uncertainty from model selection process and fusing information from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final prediction error based on the GM-type loss function. So, we can still achieve a trustworthy result even if the dataset is contaminated by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further, we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare them with other commonly used model selection and averaging methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傻傻的磬完成签到 ,获得积分10
1秒前
橘颂完成签到,获得积分10
1秒前
2秒前
务实文涛完成签到,获得积分10
2秒前
打打应助科研通管家采纳,获得10
2秒前
张a应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
非雨非晴完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
张a应助科研通管家采纳,获得10
3秒前
monly应助科研通管家采纳,获得10
3秒前
3秒前
张a应助科研通管家采纳,获得10
3秒前
Polling完成签到,获得积分10
3秒前
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
张a应助科研通管家采纳,获得10
3秒前
monly应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
张a应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
monly应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191