Robust model averaging approach by Mallows-type criterion

估计员 离群值 选型 数学 加权 稳健性(进化) 稳健回归 稳健统计 M-估计量 一致性(知识库) 计算机科学 数学优化 应用数学 统计 医学 基因 放射科 生物化学 化学 几何学
作者
Miaomiao Wang,Kang You,Lixing Zhu,Guohua Zou
出处
期刊:Biometrics [Oxford University Press]
卷期号:80 (4)
标识
DOI:10.1093/biomtc/ujae128
摘要

Model averaging is an important tool for treating uncertainty from model selection process and fusing information from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final prediction error based on the GM-type loss function. So, we can still achieve a trustworthy result even if the dataset is contaminated by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further, we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare them with other commonly used model selection and averaging methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助无语采纳,获得10
刚刚
1秒前
CipherSage应助超级柜子采纳,获得10
1秒前
CodeCraft应助qiyumeng采纳,获得10
2秒前
紧张的斩完成签到 ,获得积分10
2秒前
科研通AI5应助仓鼠侠采纳,获得10
2秒前
Jin0717发布了新的文献求助10
2秒前
3秒前
pol完成签到 ,获得积分10
3秒前
WXG完成签到,获得积分10
3秒前
3秒前
迷人依白完成签到,获得积分10
3秒前
3秒前
ggghost完成签到 ,获得积分10
4秒前
5秒前
发文章12138完成签到,获得积分10
5秒前
zcseed发布了新的文献求助30
6秒前
尚未千万里完成签到,获得积分10
6秒前
czzzzz完成签到,获得积分10
6秒前
7秒前
7秒前
RUN_L发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
2222222222给2222222222的求助进行了留言
8秒前
炙热的小刺猬完成签到,获得积分10
8秒前
fly发布了新的文献求助10
8秒前
8秒前
9秒前
zzzz发布了新的文献求助10
9秒前
香蕉觅云应助鲨鱼辣椒采纳,获得10
9秒前
9秒前
9秒前
Estrella发布了新的文献求助10
9秒前
9秒前
ddd发布了新的文献求助10
10秒前
10秒前
linger发布了新的文献求助10
10秒前
Urusaiina发布了新的文献求助10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098501
求助须知:如何正确求助?哪些是违规求助? 4310677
关于积分的说明 13431614
捐赠科研通 4137982
什么是DOI,文献DOI怎么找? 2266990
邀请新用户注册赠送积分活动 1270081
关于科研通互助平台的介绍 1206363