材料科学
电子迁移率
光电子学
晶体管
退火(玻璃)
无定形固体
数码产品
兴奋剂
工程物理
可靠性(半导体)
纳米技术
纳米
薄膜晶体管
电子线路
氧化物
半导体
电流密度
电气工程
复合材料
图层(电子)
电压
冶金
工程类
功率(物理)
化学
物理
有机化学
量子力学
作者
Yu‐Cheng Chang,S.C. Wang,Yung‐Ting Lee,Chun‐Wei Huang,Chu‐Hsiu Hsu,Tzu‐Ting Weng,Chun‐Wei Huang,Chien‐Wei Chen,Tsung‐Te Chou,C.W. Chang,Wei‐Yen Woon,Chun‐Liang Lin,Jinghua Sun,Der‐Hsien Lien
标识
DOI:10.1002/adma.202413212
摘要
Abstract Amorphous oxide semiconductors (AOS) are pivotal for next‐generation electronics due to their high electron mobility and excellent optical properties. However, In 2 O 3 , a key material in this family, encounters significant challenges in balancing high mobility and effective switching as its thickness is scaled down to nanometer dimensions. The high electron density in ultra‐thin In 2 O 3 hinders its ability to turn off effectively, leading to a critical trade‐off between mobility and the on‐current ( I on )/off‐current ( I off ) ratio. This study introduces a mild CF 4 plasma doping technique that effectively reduces electron density in 10 nm In 2 O 3 at a low processing temperature of 70 °C, achieving a high mobility of 104 cm 2 V⁻¹ s⁻¹ and an I on / I off ratio exceeding 10⁸. A subsequent low‐temperature post‐annealing further improves the critical reliability and stability of CF 4 ‐doped In 2 O 3 without raising the thermal budget, making this technique suitable for monolithic three‐dimensional (3D) integration. Additionally, its application is demonstrated in In 2 O 3 depletion‐load inverters, highlighting its potential for advanced logic circuits and broader electronic and optoelectronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI