清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a radiomics-based nomogram for predicting pathological grade of upper urinary tract urothelial carcinoma

医学 列线图 接收机工作特性 输尿管 泌尿科 放射科 上尿路 阶段(地层学) 肾盂 肾积水 回顾性队列研究 算法 泌尿系统 肿瘤科 内科学 计算机科学 古生物学 生物
作者
Yanghuang Zheng,Hongjin Shi,Shihui Fu,Haifeng Wang,Xin Li,Zhi Li,Bing Hai,Jinsong Zhang
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13325-z
摘要

Upper urinary tract urothelial carcinoma (UTUC) is a rare and highly aggressive malignancy characterized by poor prognosis, making the accurate identification of high-grade (HG) UTUC essential for subsequent treatment strategies. This study aims to develop and validate a nomogram model using computed tomography urography (CTU) images to predict HG UTUC. A retrospective cohort study was conducted to include patients with UTUC who underwent radical nephroureterectomy and received a CTU examination prior to surgery. In the CTU images, tumor lesions located in the renal calyces, renal pelvis and ureter were segmented, and radiomics features from the unenhanced, medullary, and excretory phases were extracted. The maximum relevance minimum redundancy algorithm, least absolute shrinkage and selection operator, and various machine learning (ML) algorithms—including random forest, support vector machine, and eXtreme gradient boosting—were employed to select radiomics features and calculate radiomics scores. Logistic regression (LR) analysis was performed to identify the independent influencing factors of clinical baseline characteristics. Multiple datasets of radiomics features were constructed by integrating single-phase radiomics features with the most significant independent factor. Both LR and ML algorithms were utilized to develop predictive models. The area under the receiver operating characteristic curve (AUC values), accuracy, sensitivity, and specificity were assessed for model performance evaluation. Decision curve analysis was conducted to evaluate the clinical net benefits. A total of 167 patients were enrolled in this study. Among them, 56 were diagnosed with low-grade UTUC (including papillary urothelial neoplasms with low malignant potential and low-grade urothelial carcinoma) as confirmed by postoperative pathological examination results, and 111 were of HG. These patients were randomly allocated to the training set and the validation set at a ratio of 7:3. The training set comprised 116 patients with a mean age of 63.5 ± 9.38 years and 38 males. The validation set comprised 51 patients with a mean age of 65.6 ± 11.1 years and 18 males. Hydronephrosis was identified as the most significant independent factor in the clinical baseline features. Models that include mixed-phase development achieve better performance compared to models that rely simply on single-phase development. The nomogram model had excellent predictive ability for HG UTUC, with AUC values of 0.844 and an accuracy of 0.793 in the validation sets. The nomogram model can enhance accuracy by 14.1% (79.3% vs. 65.2%) and sensitivity by 32.8% (93.2% vs. 60.4%) compared to urinary cytology. This study developed a nomogram model, which significantly improved the diagnostic ability for HG UTUC compared to urinary cytology. Furthermore, the results of the decision curve analysis showed that the model had a net benefit and could provide a non-invasive and potentially diagnostic reference tool for HG UTUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
luobo发布了新的文献求助10
13秒前
zyjsunye完成签到 ,获得积分0
19秒前
TiY完成签到 ,获得积分10
22秒前
枫林摇曳完成签到 ,获得积分10
47秒前
迅速灵竹完成签到 ,获得积分10
59秒前
忘忧Aquarius完成签到,获得积分10
1分钟前
lovexa完成签到,获得积分10
1分钟前
1分钟前
1分钟前
顺利代曼发布了新的文献求助10
1分钟前
creep2020完成签到,获得积分10
1分钟前
小巧的怜晴完成签到 ,获得积分10
1分钟前
Simran应助雪山飞龙采纳,获得10
2分钟前
111完成签到 ,获得积分10
2分钟前
2分钟前
zhangyimg发布了新的文献求助10
2分钟前
清秀的怀蕊完成签到 ,获得积分10
2分钟前
田田完成签到 ,获得积分10
3分钟前
feijelly完成签到,获得积分10
3分钟前
3分钟前
luobo发布了新的文献求助10
3分钟前
luobo完成签到,获得积分10
3分钟前
可夫司机完成签到 ,获得积分10
4分钟前
李健的小迷弟应助sidneyyang采纳,获得10
4分钟前
Cheney完成签到 ,获得积分10
4分钟前
失眠的香蕉完成签到 ,获得积分10
4分钟前
桐桐应助平常远山采纳,获得10
4分钟前
merrylake完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
lingling完成签到 ,获得积分10
6分钟前
魏白晴完成签到,获得积分10
6分钟前
7分钟前
7分钟前
平常远山发布了新的文献求助10
7分钟前
7分钟前
CipherSage应助zhouzhou采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科目三应助科研通管家采纳,获得20
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526588
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282106
捐赠科研通 2804622
什么是DOI,文献DOI怎么找? 1539554
邀请新用户注册赠送积分活动 716599
科研通“疑难数据库(出版商)”最低求助积分说明 709581